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ABSTRACT  
   

Infectious diseases have emerged as a significant threat to wildlife. 

Environmental change is often implicated as an underlying factor driving this 

emergence. With this recent rise in disease emergence and the acceleration of 

environmental change, it is important to identify the environmental factors that 

alter host-pathogen dynamics and their underlying mechanisms. The emerging 

pathogen Batrachochytrium dendrobatidis (Bd) is a clear example of the negative 

effects infectious diseases can have on wildlife. Bd is linked to global declines in 

amphibian diversity and abundance. However, there is considerable variation in 

population-level responses to Bd, with some hosts experiencing marked declines 

while others persist. Environmental factors may play a role in this variation. This 

research used populations of pond-breeding chorus frogs (Pseudacris maculata) in 

Arizona to test if three rapidly changing environmental factors nitrogen (N), 

phosphorus (P), and temperature influence the presence, prevalence, and severity 

of Bd infections.  

I evaluated the reliability of a new technique for detecting Bd in water 

samples and combined this technique with animal sampling to monitor Bd in wild 

chorus frogs. Monitoring from 20 frog populations found high Bd presence and 

prevalence during breeding. A laboratory experiment found 85% adult mortality 

as a result of Bd infection; however, estimated chorus frog densities in wild 

populations increased significantly over two years of sampling despite high Bd 

prevalence. Presence, prevalence, and severity of Bd infections were not 

correlated with aqueous concentrations of N or P. There was, however, support 
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for an annual temperature-induced reduction in Bd prevalence in newly 

metamorphosed larvae. A simple mathematical model suggests that this annual 

temperature-induced reduction of Bd infections in larvae in combination with 

rapid host maturation may help chorus frog populations persist despite high adult 

mortality.  

These results demonstrate that Bd can persist across a wide range of 

environmental conditions, providing little support for the influence of N and P on 

Bd dynamics, and show that water temperature may play an important role in 

altering Bd dynamics, enabling chorus frogs to persist with this pathogen. These 

findings demonstrate the importance of environmental context and host life 

history for the outcome of host-pathogen interactions. 
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Chapter 1 

INTRODUCTION 

 

BACKGROUND 

Emerging infectious diseases (EIDs) present an urgent challenge facing 

modern science and society. EIDs are infectious diseases that have newly 

appeared or are rapidly increasing in incidence or geographic range and include 

some of the world’s deadliest diseases such as HIV, malaria, cholera, and 

tuberculosis (Morse 1995).  Although novel diseases have infected new host 

populations throughout history, some evidence suggests that infectious diseases 

may be emerging more frequently than before (Harvell et al. 1999, Johnson & 

Paull 2011, Jones et al. 2008). In fact, since the 1970s, newly emerging diseases 

have been identified at a rate of one or more per year (World Health Organization, 

2007), with 87 diseases that were unknown 25 years ago (Woolhouse & Gaunt 

2007). Similar trends have been noted in infectious diseases of wildlife, often 

resulting in large-scale host population declines and even species extinctions 

(Daszak et al. 1999, Dobson & Foufopoulos 2001, Harvell et al. 1999, Johnson & 

Paull 2011, Okamura & Feist 2011, Stuart et al. 2004).  

Nearly all of these diseases are united by a common fact: they are 

regulated by ecological interactions in a rapidly changing world (McKenzie & 

Townsend 2007). Numerous examples demonstrate how changes in abiotic factors 

such as land use, climate, and nutrient availability can alter infectious diseases of 

humans, animals, and plants (Anderson et al. 2004, Daszak et al. 2001, Harvell et 
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al. 1999, Harvell et al. 2002, Johnson et al. 2007, Johnson et al. 2010, Okamura et 

al. 2011). With the recent rise in disease emergence and the acceleration of 

changes in land use, climate, and biogeochemical cycles it will be important to 

identify which environmental factors can alter host-pathogen dynamics and how 

they do it.  

Temperature and the availability of biologically reactive forms of nutrients 

(nitrogen and phosphorus) are two rapidly changing environmental factors that are 

implicated in infectious disease emergence (Harvell et al. 1999, Harvell et al. 

2002, Johnson et al. 2007, Okamura & Feist 2011, Okamura et al. 2011, Rohr et 

al. 2011). Nitrogen (N) and phosphorus (P) are essential and often limiting 

nutrients in ecosystems throughout the world (Elser et al. 2007), and humans are 

increasing the amount of biologically available N and P at rates that far exceed 

levels seen in recent centuries (Carpenter et al. 1998, Vitousek et al. 1997). These 

changes are known to alter terrestrial and aquatic ecosystems, and evidence is 

emerging that an increased supply of both N and P to ecosystems may also cause 

an increased risk of disease in humans and wildlife (Johnson et al. 2011, 

McKenzie & Townsend 2007). There is also compelling evidence that climate 

change, and specifically changes in temperature regimes, can affect the dynamics 

of many diseases (Harvell et al. 1999, Harvell et al. 2002, Pounds et al. 2006).  

Changes in temperature can influence patterns of disease by shifting host and 

pathogen ranges, changing pathogen or host replication rates, and altering host–

parasite interactions (Okamura et al. 2011). The overall influence of climate 

change on disease emergence and severity remain unclear (Rohr et al. 2011), but 
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some studies suggest that global increases in temperature will increase the global 

distribution and prevalence of infectious diseases (Harvell et al. 2002). In the 

work undertaken for this thesis I test the hypothesis that nutrients (N and P) and 

temperature can influence the dynamics chytridiomycosis, an emerging infectious 

disease linked to global declines in animal diversity and abundance.  

 

CHYTRIDIOMYCOSIS 

Amphibian populations on several continents have experienced dramatic 

decline linked to the emerging infectious disease chytridiomycosis (Collins & 

Crump 2009). This disease is caused by the pathogenic fungus, Batrachochytrium 

dendrobatidis (hereafter referred to as Bd; Berger et al. 1998).  Bd infects almost 

300 amphibian species (K. Kriger pers. comm.) and has been found on all 

continents where amphibians exist (Speare & Berger 2004, Bai et al. 2010). 

Whether Bd’s emergence is the result of recent spread or environmental change 

has been the subject of considerable debate (Lips et al. 2008, Pounds et al. 2006, 

Rachowicz et al. 2005, Skerratt et al. 2007). Genetic analyses (Morehouse et al. 

2003, Morgan et al. 2007), field surveys (Lips et al. 2003, Lips et al. 2006, Lips et 

al. 2008), and museum specimens (Ouellet et al. 2005, Weldon 2004) suggest that 

Bd’s emergence is due to its relatively recent spread (Skerratt et al. 2007).  Other 

studies suggest a role for temperature and possibly climate change in the 

emergence of this disease on a regional scale (Bosch et al. 2007, Kriger et al. 

2007, Pounds et al. 2006). There is considerable variation in both individual- and 

population-level responses of amphibian hosts to Bd with some host populations 
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experiencing marked declines while others persist (Daszak et al. 2005, Hale et al. 

2005, Lips et al. 2006, Lips et al. 2003, Puschendorf et al. 2011, Reeder et al. 

2012, Retallick et al. 2004). Although it is likely that several factors contribute to 

the outcome of Bd introductions into amphibian populations (Blaustein & 

Kiesecker 2002), outbreaks of chytridiomycosis are often associated with specific 

environmental conditions (Lips et al. 2003, Pounds et al. 2006, Stuart et al. 2004). 

These studies demonstrate the potential for abiotic factors to influence Bd host-

pathogen dynamics. Many of these studies, however, focus only on the terrestrial 

environment, largely ignoring the aquatic environment, which may act as a center 

for Bd transmission (Lips et al. 2006). These studies also concentrated mostly on 

air temperature and precipitation as the major factors influencing the distribution 

of Bd and outbreaks of chytridiomycosis, overlooking other factors known to 

influence Bd reproduction, such as nutrient availability (Piotrowski et al. 2004). 

This research addresses these gaps using populations of pond breeding frogs from 

Arizona. 

 

MODEL SYSTEM AND CHAPTERS 

Arizona is a microcosm of global amphibian declines. Declines and 

extirpations are known in all seven native leopard frog species (Clarkson & 

Rorabaugh 1989, Sredl 1997, U.S. Fish and Wildlife Service 2007, Witte et al. 

2008). However, populations of the boreal chorus frog (Pseudacris maculata) 

appear to persist with Bd, despite evidence that this species suffers up to 80% 

mortality as a result of Bd infection (Retallick & Miera 2007).  My research 
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combines laboratory experiments with detailed descriptions of the dynamics of Bd 

in wild chorus frog populations to test if abiotic aspects of the aquatic 

environment (temperature or N and P availability) influence the ability of these 

populations to persist with Bd.  

 Chapter Two reports the diagnostic sensitivity of a PCR-based water 

filtration technique used to detect Bd. This technique has the potential to reduce 

greatly ethical and logistical constraints of current Bd monitoring techniques by 

removing the need to capture host species. This study compared the results of four 

repeated filter sampling events from 20 ponds to those of skin swabs from ~60 

boreal chorus frogs from each pond. Filters failed to detect Bd in 31-77% of the 

swab-positive ponds, with the lowest rates of detection late in the season when 

young-of-the year froglets emerge. However, after three repeated sampling 

events, filtration of small volumes of water (~600 ml) correctly identified 94% of 

the ponds that tested Bd positive with swabbing. These results demonstrate the 

importance of timing and resampling for the detection of an aquatic microbial 

pathogen from water and aid in the development of cost-effective monitoring 

regimes for Bd. They also provide evidence that Bd presence and prevalence is 

reduced during warmer times of the year, when young-of-the-year froglets 

emerge. 

Chapter Three reports a test of how the distribution and pond-level rates of 

Bd transmission were related to aquatic concentrations of N and P in breeding 

ponds. Pond water and breeding chorus frogs were sampled at 20 sites over two 

years.  Seventeen sites harbored Bd over both years with high Bd prevalence (up 
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to 100%) and loads (up to 193,000 zoospore genomic equivalents per frog) at 

each site. Bd presence, prevalence, short-term changes in prevalence (a proxy for 

incidence), loads, and aquatic densities of Bd were not related to concentrations of 

N or P but were associated with the timing of sampling and host densities. Chorus 

frog densities increased significantly over the two years of sampling despite the 

presence of Bd. These results demonstrate that Bd can persist across a wide range 

of aquatic nutrient concentrations and that chorus frog populations persist with Bd 

at high host and pathogen densities for at least two generations.  

Chapter Four summarizes a test of two hypotheses to explain the ability of 

chorus frog populations to persist with Bd: host tolerance and temperature 

induced environmental rescue. In laboratory experiments adult chorus frogs with 

natural Bd infections suffered 85% mortality with no mortality in uninfected 

controls, providing minimal support for host tolerance of Bd infections playing a 

role in population persistence. Support was found for a seasonal, temperature 

induced reduction in Bd prevalence in newly metamorphosed larvae.  Bd 

prevalence in summer-emerging froglets was significantly lower than Bd 

prevalence in adults, with 11 of 15 ponds testing Bd negative despite these same 

ponds testing Bd positive when adults were tested earlier in the season. 

Experimental heat-treatment at naturally relevant temperatures removed Bd 

infections from developing chorus frog larvae, indicating that warm water 

temperatures remove Bd infections during tadpole development. Also, intensive 

weekly surveys from two ponds found that Bd infections were completely absent 

from the larval cohort in a warmer, ephemeral pond, while Bd persisted in larvae 
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and newly metamorphosed froglets in a deeper, cooler, perennial pond.  These 

results support the hypothesis that warm water temperatures reduce Bd prevalence 

in developing larvae and may explain the reduction and frequent absence of Bd 

from summer emerging froglets. A mathematical model examining the relative 

importance of juvenile versus adult frog survival found that juvenile survival may 

be most important for projected chorus frog population growth, supporting the 

hypothesis that pronounced seasonal reduction in Bd prevalence in young-of-the-

year froglets in combination with quick rates of maturation (~1 yr) might enable 

populations of boreal chorus frogs to persist with Bd, despite high rates of annual 

adult mortality from chytridiomycosis.  

 In combination, these results provide an example of how host life history 

and environment may interact to enable a population of susceptible hosts to 

persist with a virulent pathogen. My research also demonstrates how subtle 

environmental differences can alter the dynamics of Bd in chorus frog 

populations, potentially altering the selective pressures that Bd exerts on chorus 

frog populations at scales as small as individual ponds. Future studies should 

examine how pond-level differences in disease dynamics can shape the evolution 

of Bd in chorus frogs and influence the ability of chorus frog meta-populations to 

persist with this pathogen.
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     Chapter 2 

EVALUATION OF A FILTRATION-BASED METHOD FOR THE 

DETECTION OF BATRACHOCHYTRIUM DENDROBATIDIS IN NATURAL 

BODIES OF WATER 

 

ABSTRACT 

 Infectious diseases are emerging as a significant threat to wildlife. The 

resulting increased effort to monitor wildlife diseases is driving the development 

of innovative pathogen monitoring techniques, including many polymerase chain 

reaction (PCR)-based diagnostics. Despite the utility of these PCR-based 

techniques, there is still much to be learned about their ability to accurately detect 

target pathogens in nature. I assessed the diagnostic sensitivity of a PCR-based 

water filtration technique to detect the directly transmitted aquatic fungal 

pathogen Batrachochytrium dendrobatidis (Bd) by comparing the results of four 

repeated filter sampling events from 20 ponds to those of skin swabs from ~60 

boreal chorus frogs (Pseudacris maculata) from each pond. Filters failed to detect 

Bd in 31-77% of the swab-positive ponds, depending on the time of sampling. 

However, after three repeated sampling events, filtration of small volumes of 

water (~600 ml) correctly identified 94% of the ponds that tested Bd positive with 

swabbing, with the highest rates of detection occurring after breeding but before 

larvae reached metamorphosis. These results are a case study demonstrating the 

importance of timing and resampling for the detection of an aquatic microbial 

pathogen, Bd, from water. This will be a useful technique for monitoring Bd, but 
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additional studies are needed to test the degree to which my findings are species- 

or population-specific. These studies will aid in the development of cost-effective 

monitoring regimes for Bd and potentially other aquatic pathogens. 

 

INTRODUCTION 

 Infectious diseases are emerging as a significant threat to wildlife (Daszak 

et al. 2000). Understanding this threat necessitates the development of innovative 

monitoring techniques that can increase the accuracy and efficiency of pathogen 

surveys. Surveys of wildlife pathogens are often limited by time, money, host 

species abundance, and ethical issues related to invasive animal-sampling 

techniques (Spalding & Forrester 1993). Environmental detection of pathogens 

has the potential to greatly reduce these ethical and logistical constraints by 

removing the need to capture host species (e.g. Kirshtein et al. 2007). 

Environmental sampling can also enrich our understanding of pathogen dynamics 

outside of their central hosts (e.g. Epstein 1993, Walker et al. 2007). For these 

reasons, DNA screening of environmental samples has been used to detect a 

number of water and soil-borne pathogens of humans (e.g. Loge et al. 2002) and 

wildlife (e.g. Brinkman et al. 2003, Audemard et al. 2004). Advances in DNA 

purification and amplification have enabled the development of highly specific 

and analytically sensitive environmental diagnostics (e.g. Kirshtein et al. 2007). 

However, without knowledge of the rates at which these assays miss the presence 

of a target pathogen, disease prevalence estimates can be greatly underestimated, 

negating the aforementioned advantages and misleading scientists and managers 
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(e.g. Greer & Collins 2007). It is, therefore, critically important to thoroughly 

assess the sensitivity of these diagnostics.  

 A diagnostic assay’s sensitivity has two components: analytical sensitivity 

and diagnostic sensitivity. Analytical sensitivity is the smallest amount of a 

substance in a sample that can be measured accurately by an assay. Diagnostic 

sensitivity is the percentage of samples that have the target substance that are 

properly identified by the assay (Saah & Hoover 1997). The sensitivity of DNA-

based diagnostics for soil- and water-borne pathogens is influenced by a number 

of factors, including the volume of sample processed, the efficiency of target 

recovery, and the presence of polymerase chain reaction (PCR)-inhibitory 

compounds (Loge et al. 2002). Variation in these factors will influence the overall 

diagnostic sensitivity of the assay, potentially resulting in false negatives (lack of 

detection despite the presence of the pathogen). This, in turn, will influence the 

interpretation of sampling results, with the potential to underestimate pathogen 

prevalence and distribution. Here, I assess the diagnostic sensitivity and 

advantages of a novel PCR-based water filtration technique for the detection of an 

emerging aquatic fungal pathogen, Batrachochytrium dendrobatidis (Bd). 

 Bd is a member of the fungal phylum Chytridiomycota (chytrids). Like 

other chytrids, Bd is transmitted by flagellated propagules called zoospores 

(Berger et al. 1998, 2005). These zoospores travel through water to encyst in the 

outermost layers of keratinized amphibian host skin cells. Once encysted, the 

zoospores develop into zoosporangia that eventually open, releasing more 

infective zoospores into the environment (Berger et al. 2005). Heavy Bd 
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infections can result in chytridiomycosis, a disease in which amphibians lose their 

ability to osmoregulate due to the inhibition of cutaneous ion exchange (Voyles et 

al. 2009). 

 Chytridiomycosis is linked to declines and extinctions of about 200 

species of frogs on several continents (Collins & Crump 2009). In response to this 

emerging infectious disease, international and governmental agencies on several 

continents are investing millions of dollars in research and development of 

amphibian threat abatement plans, which include guidelines to describe the 

distribution and understand the epidemiology of chytridiomycosis (Skerratt et al. 

2007, USFWS 2007). These, along with other Bd-monitoring initiatives, make 

clear the need for time- and cost-effective tools that can accurately monitor Bd in 

the field. 

 One such tool is filtering water to detect Bd in the aquatic environment 

(Kirshtein et al. 2007, Walker et al. 2007). This technique is designed to capture 

zoospores or remnant Bd DNA from the water column and then amplify this DNA 

using PCR. These filtration techniques have the potential to significantly 

reduce Bd sampling effort and costs by eliminating the need to collect and process 

DNA samples from the currently accepted standard of 30 to 60 animals per 

habitat, which can be difficult to obtain when dealing with sites with low 

amphibian abundance or rare or cryptic species (Skerratt et al. 2008). Recent 

studies (Kirshtein et al. 2007, Walker et al. 2007) successfully detected Bd from 

small volumes (<1 l) of field-collected water using a highly specific PCR-based 

assay (Hyatt et al. 2007). They also found these techniques to have a high 
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analytical sensitivity, with detection limits as low as 0.1 zoospores (Walker et al. 

2007) and 0.06 zoospores (Kirshtein et al. 2007). Yet, we do not know the overall 

diagnostic sensitivity of these filtration techniques, nor do we clearly understand 

the factors that enhance the likelihood of Bd detection by filtration. 

 My goal was to assess the ability of water filters to correctly identify a 

pond as Bd positive by comparing filter outcomes to those of the currently 

accepted standard of skin swabs from 60 frogs. Although swabs from 60 animals 

cannot definitively confirm the absence of Bd from these ponds, this method 

currently serves as the most accurate way to determine the presence of Bd within 

a habitat, with 95% certainty if prevalence is ≥ 5% (Skerratt et al. 2008). Using 20 

ephemeral ponds with Bd-infected populations of the boreal chorus frog 

(Pseudacris maculata) I addressed the following questions: (1) What percentage of 

filters fails to detect Bd when present in swabs collected from live animals? (2) 

How many filters should be taken to maximize the probability of detecting Bd? 

(3) When is the ideal time to filter water to maximize Bd detection? 

 

METHODS 

Field Sites and Focal Amphibian Host Species 

 Water samples and skin swabs were collected from each of 20 ponds in 

Coconino National Forest, Coconino County, Arizona, USA. All ponds were 

lentic bodies of water: ephemeral ponds, perennial ponds, man-made cattle ponds, 

and one spring. Ponds ranged in elevation from 1700 to 2400 m, with a mean 

maximum surface area of 2.3 ha (SEM: ±1.2 ha; limits: 0.15 to 24 ha), and a mean 
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maximum depth of 180 cm (SEM: ±50 cm; limits: 68 to 250 cm).  

 Skin swabs were collected from breeding adult boreal chorus frogs. This 

species is an annual spring breeder. In Arizona, adult males aggregate in dense 

choruses at shallow ends of ponds and conduct mating calls for several weeks 

following snowmelt in late February to early April. Tadpoles develop over an 

approximately 2.5 mo period, with metamorphic frogs typically emerging when 

ponds begin to dry in mid-June. Adults and metamorphic frogs forage near pond 

edges during the summer and overwinter under leaves, rocks, and logs beneath the 

snow (Moriarity & Lannoo 2005). Over this lifecycle, chorus frogs may migrate a 

maximum of 200 m from their natal pond (Kramer 1973). I, therefore, considered 

my study ponds to be independent populations as they were separated by a 

minimum of 1 km. 

Animal Sampling 

 From March to May 2010, I swabbed approximately 60 adult frogs from 

each pond, for a total of 1115 swabs. Approximately 30 adult frogs were collected 

from each pond during each of 2 time periods: (1) when breeding was initiated 

(T1) and (2) 1 to 2 wk post-breeding-initiation (T2; Fig. 1). These two time 

periods were selected to maximize the likelihood of detecting Bd, as Bd 

prevalence is highest in adult frogs and these are the only times when they are 

easily obtained (O. Hyman unpubl. data). All animals were swabbed between 

19:00 and 01:00 h. Animals were captured by hand, wearing disposable vinyl 

gloves, which were changed after handling each individual to prevent the spread 

of Bd. Each frog was swabbed with a wooden toothpick, toe-clipped to prevent 
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resampling, and released at the site of capture (Retallick et al. 2006). Swabs were 

placed in individual 2 ml screw-cap microcentrifuge tubes (USA Scientific, No. 

1420-9701) containing 70% ethanol. In addition, an unused swab was placed into 

a tube at each site to act as a negative field control. All vials were kept on ice then 

stored at −20 °C in the laboratory. All field equipment was rinsed with 20% 

bleach solution and completely dried between collecting events to prevent 

contamination across sites. Swabs were extracted in Prepman UltraTM (Applied 

Biosystems, Part No. 4318903), diluted 1:10 in sterile water, and stored at −20 °C 

in preparation for PCR analysis following Retallick et al. (2006). Bd-positive and 

-negative controls were included in each extraction batch. 

Water Sampling 

 Water filters were collected from each pond at four different time points 

(Fig. 1): T1 and T2 as already described, T3 (3 to 4 wk post-breeding initiation, 

when tadpoles were present), and T4 (10 wk post-breeding initiation when 

metamorphosed froglets began to emerge). These time points were selected to 

maximize the likelihood of Bd detection by matching the times of highest density 

for each chorus frog life stage. Swabs of larval and newly metamorphosed frogs 

were not obtained due to monetary constraints and failure to detect Bd infections 

in these life stages in previous surveys (O. Hyman unpubl. data). 

 One filter was collected from each pond at each time point, unless ponds 

had dried, in which case no filters were collected (Table 1). Water was filtered 

following Kirshtein et al. (2007). Briefly, water from each pond was pushed 

through an individual Sterivex 0.22 µm filter (Millipore Part No. SVGV01015) 
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using a sterilized 60 ml Luer-Lok plastic syringe (BD, Part No. 309653). New 

syringes and filters were used for each pond. After the sample was filtered, 60 ml 

of phosphate-buffered saline (PBS) was pushed through the filter. Then each filter 

was drained, labeled, sealed in an individual ZiplokTM bag, and kept on ice for ≤ 5 

h until it could be frozen at −20 °C in preparation for DNA extraction. A total of 

approximately 600 ml of water was filtered from each pond by collecting 20 ml 

from 30 locations within 3 m of pond edges. Samples were spaced evenly along 

the entire pond circumference, but taken only from areas where frogs or tadpoles 

were present. To account for potential heterogeneity in the distribution of Bd in 

the water column, I sampled water from a variety of within-pond microhabitats 

including areas of dense/sparse vegetation, detritus, and amphibian densities. 

Volumes filtered were recorded when filters became clogged prior to 600 ml. 

DNA was extracted from filters following the protocol developed by Kirshtein et 

al. (2007). 

Real-time TaqMan PCR Assay 

Samples were run in duplicate using an Applied Biosystems 7900HT sequence 

detection system and a modified version of the protocol developed by Boyle et al. 

(2004) and Garland et al. (2010). To reduce costs, we used 20 µl (rather than 25 

µl) reactions containing 10 µl of 2x TaqMan Universal PCR Master Mix (Applied 

Biosystems, Part No. 43034437), 1 µl of 18 µM primers, 0.5 µl of 5 µM TaqMan 

probe, 2.5 µl of sterile DNA grade water, 8 µg of bovine serum albumin (BSA), 

and 5 µl of the previously described sample. This master cocktail was split into 

two tubes, one of which received TaqMan exogenous internal positive control 
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(IPC; Applied Biosystems, Part No. 43083283) following Garland et al. (2010). 

The other tube was left as ‘normal’ master mix. One duplicate of each sample 

contained IPC to test for PCR inhibition. In addition, three wells containing IPC 

and DNA-grade sterile water for template served as IPC controls. Standards of 

20.0, 2.0, 0.2, and 0.02 Bd genome equivalents (GE) µl−1 (equivalent to 100, 10, 

1, and 0.1 GE in the total 5 µl of template added) and negative controls were 

included in each 384-well plate. 

Analysis 

Following Garner et al. (2009), samples were scored positive if both duplicate 

wells were positive by quantitative PCR (qPCR). If one or none of the duplicate 

wells tested Bd positive, the sample was rerun in duplicate. If two or more of the 

four wells tested Bd positive over the course of these runs, the sample was 

considered Bd positive. If none of the wells tested positive in this rerun and there 

were no signs of PCR inhibition, the samples were considered Bd negative, with 

any previous single positive wells considered the result of inadvertent 

contamination or background fluorescence (Kriger et al. 2006). Following Garner 

et al. (2009), samples were considered PCR-inhibited if IPC cycle thresholds (CT 

values) were > 2 cycles above IPC CT of the sterile water controls. Negative 

samples with IPC CT > 2 CT values over the controls were rerun in duplicate. 

They were counted as negative if they came back with IPC CT values ≤ 2 CT over 

the controls. If negative samples still showed signs of inhibition after the rerun, 

they were rerun in duplicate a third time at a 10-fold dilution and counted as 

negative or positive following the criteria above.  
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 The amount of Bd DNA in filter extract, in GE units, was calculated as: 

 

 Zoospore GE = mean output of all Bd-positive wells x 200 

 

to account for sample dilutions and unit conversions. Results from 10-fold diluted 

samples were multiplied by an additional factor of 10. Zoospore GE l–1 was 

calculated as: 

 

 Zoospore GE l–1 = (zoospore GE/volume filtered[ml]) x 1000 

 

Filter sensitivity was calculated within each individual sampling period by 

dividing the number of ponds testing Bd positive by filtration by those testing 

positive by swabbing, with the following caveats. Ponds testing Bd negative by 

swabbing < 60 animals were dropped from calculations of filter sensitivity 

because they run a > 5% risk of being false negatives (Skerratt et al. 2008). I also 

assumed that, because amphibian hosts were present in ponds throughout our 

sampling periods and Bd has persisted in these ponds for multiple years (O. 

Hyman unpubl. data), it is unlikely that Bd would completely disappear from 

any Bd-positive pond during the time periods we sampled. Furthermore, a pond 

testing Bd positive at any time point by swabbing, should be considered a Bd-

positive location. Therefore, all ponds that tested Bd positive by swabbing by the 

end of the breeding season (T2) were assumed to be Bd positive throughout the 

following sampling periods (T3 and T4). I considered any filter testing negative 
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from these ponds to be a false negative, and calculated the probability of a false 

negative (P) as: 

 

 P = 1 − (no. of Bd+ ponds by filterTn/no. of Bd+ ponds by swabTn) 

 

 where Tn = the time period of sampling. 

 

Filter sensitivity relative to swabs was also calculated across all sampling periods 

by dividing the cumulative number of ponds testing Bd positive with filtration by 

the number of swab-positive ponds. 

 Lastly, I calculated the overall sensitivity of filters (i.e. the percent of Bd-

positive ponds by swabbing that were correctly identified across each sampling 

period) for every possible combination of one, two, three, and four sampling 

events. These percentages were used to determine the mean, minimum, and 

maximum sensitivity of filters after one, two, three, and four sampling events. 

These percentages were also used to identify the most time-effective combination 

of sampling periods to filter water in order to maximize detection while 

minimizing sampling effort.  

 Bonferroni-corrected Spearman rank correlations were used to explore the 

relationship between Bd prevalence within a pond and the total number of filters 

testing Bd positive within that pond. Linear regression was used to compare log-

transformed zoospore GE from Bd-positive filters to log-transformed volume of 

pond water filtered. Log-transformed zoospore densities detected by filters were 
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compared across sampling periods using a non-parametric Kruskal-Wallis test to 

account for small sample sizes and zero inflation. All statistics were performed in 

JMP (Ver. 5.0.1.2, SAS). 

RESULTS 

Swabs 

 Sixty swabs were collected from all except 7 ponds (Table 1). Two ponds 

with total sample sizes < 60 (Baker Lake, n = 31, and No Name 13, n = 25) also 

tested Bd negative with swabs, and were therefore omitted from our calculations 

comparing filters to swabs (see justification above; Table 1). Swabs detected Bd 

at 16 of 20 ponds (80%) when breeding began (T1; data not shown). Swabs 

detected Bd at the same 16 ponds as well as 1 additional pond (Twin) at T2, for a 

total of 17 of 20 ponds testing Bd positive (85%; Table 1). Bd prevalence at each 

pond varied from 0 to 98% (mean = 32%, SD = 27%; Table 1). Despite high Bd 

prevalence, no mass mortalities were observed. 

Filters 

 Filters were collected in all four time periods for all but six ponds, which 

either dried completely before the final sampling was finished or had lost samples 

(Table 1). The mean volume of water filtered across all ponds within each time 

period was significantly lower at T4 (ANOVA3,69, p < 0.0001; Tukey’s honestly 

significant difference [HSD]α=0.05), with mean (±SEM) volumes of 510 (±32), 513 

(±31), 545 (±32), and 297 (±36) ml filtered at T1, T2, T3, and T4, respectively. 

This reduction in filtrate at T4 was due to increased water turbidity as ponds dry 

during the course of the summer.  
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 PCR inhibition was minimal in my samples. Only 11 negative samples had 

IPC CT > 2 cycles above sterile water controls. All of these samples tested 

negative for Bd after reruns and dilutions that brought IPC CT within 2 cycles of 

controls (CT = 33). IPC CT values of all other negative samples ranged from −1 

to 2 cycles above control IPC CT values, with a mean of 1 cycle above controls. 

Although we cannot rule out inhibition as the reason Bd was not detected in the 

samples that had IPC CT values > 0 cycles above IPC controls (n = 15), the fact 

that the IPCs in these samples amplified within 2 cycles of controls indicates that, 

although there were inhibitors present in these samples, they did not significantly 

reduce or preclude DNA amplification. I, therefore, considered these to be true 

negatives. All positive and negative extraction and field controls worked properly. 

 Filters were able to detect Bd in every pond with Bd prevalence ≥ 10% in 

amphibian hosts (Table 1). Overall, filters produced results similar to swabs, with 

17 of 20 ponds (85%) testing Bd positive by filtration (Table 1). However, these 

were not the exact same 17 ponds that tested positive by swabbing. One Bd-

negative pond by swab tested Bd positive by filtration (No Name 13) and vice 

versa (McClure; Table 1). The pond testing Bd positive by filtering, but not 

swabbing, had the smallest sample size, with 25 swabbed animals (Table 1). The 

pond testing Bd positive by swabbing, but not filtering, had the lowest Bd 

prevalence (7%) of all ponds tested (Table 1). The overall number of filters 

testing positive within a pond was positively correlated with the prevalence of Bd 

in adult chorus frogs that bred there (Spearman’s rho = 0.48, p = 0.03), indicating 

that higher prevalence in breeding adults at the start of the season increases the 
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likelihood of Bd detection by filters throughout chorus frog breeding and 

development. The mean density of aquatic zoospores across only positive filters 

(n = 31) was 30.0 zoospore GE l−1 (SEM: 10.8; limits: 1.3 to 313 zoospore GE 

l−1). Mean (±SEM) zoospore densities increased from 5.4 (±2.7) to 20.2 (±15.5) 

zoospore GE l−1 from T1 to T2 then decreased to 14.0 (±5.9) and 10.4 (±8.8) 

zoospore GE l−1 at T3 and T4, respectively (Fig. 2). However, there was no 

significant difference in the detected zoospore densities across sampling time 

periods (Kruskal-Wallis χ2
3 = 5.8, = 0.12). There was no relationship between the 

number of zoospore GE detected in Bd-positive filters and the volume of water 

filtered (linear regression adjusted r2 = 0.001, F1,29 = 0.03, p = 0.86); however, I 

filtered a narrow range of water volumes (240 to 600 ml), which limits the 

interpretation of this result. 

 Two ponds (Baker Lake and No Name 13) were dropped from the 

sensitivity analyses due to Bd negative results and insufficient sampling of 

animals at the start of the breeding season (see criteria for dropping above; Table 

1). These ponds were excluded from all calculations in the following paragraph. 

Of the remaining 18 ponds that met the inclusion criteria, 17 tested Bd positive by 

swabbing (94%; Table 1, Figs. 3 & 4). After four sampling events, filters failed to 

detect Bd from only one of these 17 ponds that tested Bd positive by swabbing 

(McClure Lake; Table 1, Fig. 4). However, filter-positive ponds did not 

consistently test positive across all filter-sampling events. In fact, 32 of the 62 

(52%) total filters taken from ponds that were known to be Bd positive by swabs 

(n = 17) tested Bd negative (Table 1). The percentage of Bd positive ponds by 
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swab (n = 17) that tested Bd positive by filtration was 31 (T1), 65 (T2), 69 (T3), 

and 23 (T4) within each sampling event (Table 1). This translates to a false 

negative rate varying from 31 to 77% within a single sampling period, with the 

most false negatives occurring at T1 and T4 (Fig. 3). The cumulative percent of 

swab-positive ponds that tested positive by filtration increased from 31 to 71 to 

94% after one, two, and three/four sampling events, respectively (Fig. 4). This 

translates to 69, 29, and 6% of swab-positive ponds falsely testing negative by 

filtration after one, two, and three/four filter sampling events, respectively. 

 Including all ponds, regardless of swab sample size, a total of 18 ponds 

tested Bd positive by either swabbing or filtering. At the two time points when 

both swabs and filters were taken (T1 and T2) swabbing ca. 30 adult host animals 

(T1) detected Bd in 16 of the 18 Bd-positive ponds (89%) and swabbing ca. 60 

animals (T1 and T2) detected Bd in 17 of the 18 Bd-positive ponds (94%), while 

filtering detected Bd in only six (33%) and 11 (61%) of the 18 known Bd-positive 

ponds at T1 and T2, respectively. 

 Repeated water sampling at key time periods related to the life stages and 

natural history of our study species corrected this lack of detection. Filtering 

water at all four time points (T1 to T4) detected Bd at 17 of the 18 ponds that 

tested Bd positive by swabs or filters (94%; Table 2). Examining every 

permutation of filter sampling regimes revealed that filtering at only three time 

points would have detected Bd at 14 to 17 ponds (78 to 94%), filtering at only two 

time points would have detected Bd at eight to 15 ponds (44 to 83%), and filtering  
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at only one time point would have detected Bd at three to 11 ponds (17 to 61%) 

depending on the timing of sampling (Table 2). 

 

DISCUSSION 

 Detecting pathogens by water filtration has several clear advantages over 

sampling animals. First, sampling water eliminates many ethical concerns related 

to the harm and stress caused during the sampling of animal hosts. Second, 

filtration enables pathogen detection in the absence of a sufficient number of 

animal hosts. These advantages are especially important when working with 

cryptic, rare, or endangered species (e.g. USFWS 2007). Third, filtering can 

reduce the time and money spent to detect a target organism in the field by 

reducing the number of samples needed to accurately detect a pathogen (Skerratt 

et al. 2008). However, all of these advantages depend on the sensitivity of the 

filtration technique. 

 I found that sampling small volumes of pond water for Bd had a low 

diagnostic sensitivity at individual time points. Overall, 31 to 77% of filters failed 

to correctly identify Bd swab-positive ponds in any single sampling period. This 

is an unacceptable level of sensitivity to determine the presence or absence of a 

target pathogen (Pfeiffer 2002). Despite the low sensitivity of filters in individual 

sampling periods, the 94% (16 of 17 ponds) agreement between filters and swabs 

after three sampling events and an equal number of Bd-positive ponds (n = 17) 

being detected by 60 swabs and three filtering events demonstrates that, with 

proper resampling, filters can be a viable Bd monitoring technique in this system.  
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 Matches between sample IPCs and controls indicate the reduced filter 

sensitivity in individual sampling periods is unlikely to be caused by PCR 

inhibition. It is more likely that Bd is either not present in the small volume of 

water that was sampled or present at densities below detection. Increasing the 

volume of filtrate by prefiltering water with a more coarse filter or switching to 

slightly larger pore sizes that will still capture zoospores (e.g. 45 µm) may 

increase the chance of detection. 

 My finding of 94% (16 of 17 ponds) agreement between filters and swabs 

after three sampling events demonstrates the importance of sampling a pond 

multiple times in order to detect Bd by water filtration (Fig. 4). Although 

sampling all three filters in one time period could greatly reduce effort and 

expenses related to revisiting sites, the highest percentage of filters detected Bd 1 

(T2) to 4 (T3) wk following breeding initiation (Fig. 3), indicating that timing of 

sampling influences the likelihood of detection. These results suggest that 

stratifying sampling across times that coincide with periods of potentially high 

pathogen prevalence (e.g. following breeding; Table 1) will increase the 

probability of detection. If data are available, surveyors should plan to collect 

filters in the days and weeks following times that typically display the highest 

pathogen prevalence.  Two ponds tested Bd positive by one technique and not the 

other, indicating that in certain contexts one technique can be superior. The single 

pond that tested Bd positive by swabbing and not filtration (McClure Lake; Table 

1) had the lowest Bd prevalence (7%; Table 1) of all the ponds I sampled. Also, 

only three filters (instead of the usual 4) were collected from this pond because it 
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dried before the final sampling period (Table 1). Reduced sample size combined 

with low Bd prevalence may explain why this pond did not test Bd positive by 

filtration. The inability of filters to detect Bd from a low prevalence pond 

indicates that there may be a threshold Bd prevalence (in this case 7%) at which 

filters do not successfully detect this pathogen. Thus, swabbing may be superior 

to filtering in cases where Bd prevalence is low but amphibian hosts are easily 

captured and/or in high enough abundance to obtain sufficient sample sizes (see 

Fenichel et al. 2008 and Skerratt et al. 2008 for in-depth treatment of sample sizes 

and disease detection). On the other hand, filters may be advantageous when 

amphibian hosts are not abundant. For example, filters identified a pond (No 

Name 13) as Bd positive even though swabs failed to detect Bd (Table 1). Only 

25 animals (the smallest sample size) were collected from this site. This sample 

size has a < 95% probability of detecting Bd at prevalences ≤ 11% (Fenichel et al. 

2008). It is apparent that swabbing 25 animals was not sufficient to detect Bd at 

the low prevalence at this pond. Thus, filtering water may be superior when a 

sufficient number of hosts cannot be collected to detect low levels of Bd 

prevalence by swabbing. Future studies should formally examine the ability of 

filters to detect Bd in areas of low amphibian abundance/low Bd prevalence. 

 The increase in Bd detection by filtration following breeding (T2 and T3; 

Fig. 3) could be a result of the accumulation of Bd zoospores in the water 

following times of high densities of infected and susceptible amphibian hosts (e.g. 

Vredenburg et al. 2010), such as breeding. This is supported by the positive 

correlation between Bd prevalence in breeding adults and filter detection rates. 
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This is also supported in part by the general increase in detected zoospore 

densities after the initiation of breeding (T1 to T2) followed by a steady decrease 

in mean zoospores densities after breeding (T2 to T4; Fig. 2), though these 

differences were not statistically significant. Yet, I found reduced detection by 

filtration later in the season, when metamorphs emerged (T4), despite the fact that 

metamorphs emerge at extremely high densities (O. Hyman pers. obs.). This may 

indicate a reduced density of aquatic Bd zoospores due to increases in water 

temperature or other abiotic factors that change as ponds become warmer and dry 

out. This reduced detection may also be a result of lowered Bd susceptibility in 

tadpoles or metamorphic froglets (Blaustein et al. 2005). If these stages are not 

susceptible to Bd infection, the number of zoospores released into the 

environment would be reduced, resulting in decreased rates of detection. Future 

studies should examine the susceptibility of these life stages to Bd infection and 

the influence of environmental factors such as pond salinity and temperature on 

disease pathology and Bd transmission. I cannot rule out the overall reduction in 

volume of filtrate at T4 as the cause of reduced detection. However, Walker et al. 

(2007) found that zoospore densities decreased with increasing volume of filtrate, 

indicating that more turbid waters often contain higher zoospore densities, though 

we did not find this trend. 

 The persistence of Bd in the environment can have important implications 

for host−pathogen dynamics (Mitchell et al. 2008). Although the filtration 

technique I used cannot distinguish between the presence of live, infectious Bd 

versus non-living (but detectable) Bd DNA, the repeated detection of Bd in 
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the water column suggests that Bd zoospores, or perhaps other life stages, persist 

in the water column throughout chorus frog development. DNA fragments of 

approximately 400 base pairs (bp) may persist up to 1 wk at 18°C in lake water 

(Matusi et al. 2001). Also, Dejean et al. (2011) found that bullfrog and sturgeon 

DNA persist < 1 mo in pond water. This suggests that the detection of Bd 

throughout our 3 to 4 mo sampling period is from the presence of live zoospores, 

as opposed to remnant DNA fragments from infected individuals present during 

the breeding season. However, the reduced detection at T4 does suggest that many 

of our Bd positive filters could be detecting remnant DNA fragments from 

infected adults (Dejean et al. 2011). The filtration tests I used cannot determine 

the ultimate source of these zoospores (environmental or amphibian hosts); 

however, reduced Bd detection from the water column at the start and the end of 

the breeding season (Fig. 3) indicates that Bd is either not present in the 

environment in the absence of infected amphibian hosts, or present at lower 

densities. 

 Similar to Walker et al. (2007) and Kirshtein et al. (2007), I found aquatic 

zoospore densities high enough to cause infections without direct contact with an 

infected individual (Carey et al. 2006). If these densities represent live infectious 

zoospores (as opposed to remnant DNA), this could help explain Bd’s ability to 

transmit independent of host density, resulting in local host extinction (Mitchell et 

al. 2008). Despite these high environmental zoospore densities and high Bd 

prevalence in breeding adults, I found no evidence of disease induced die-offs or 

local extinctions in the chorus frog populations we studied. Chorus frogs may be 
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tolerant of Bd infections or suffering from disease cryptically, after the breeding 

season, when animals are hidden in the area surrounding ponds.  

 Filtering small volumes of water (≤ 600 ml) detected Bd in small, 

ephemeral ponds with high Bd prevalence. However, 52% of filters from ponds 

known to be Bd positive falsely tested negative, with the percent of false 

negatives varying from 31 to 77% depending on the season. Repeatedly sampling 

individual ponds at multiple time points (start of breeding, end of breeding, and 

when tadpoles were present) maximized detection, correctly identifying 94% of 

the ponds that swabs designated Bd positive. The ideal time to filter water for the 

presence of Bd was at the end of the breeding season and during the following 3 

wk, when tadpoles were present in ponds. Detection was reduced at the start of 

breeding and late in the season when metamorphic frogs emerge. These results 

indicate that filtering water from three key time periods in the life cycle of boreal 

chorus frogs has similar sensitivity to sampling about 60 animals across two time 

points. This is encouraging, as there are many advantages to filtering over 

swabbing. For example, in on-site person-hours, capturing, swabbing, and 

releasing 60 animals takes significantly longer than filtering 600 ml of water four 

times (O. Hyman pers. obs.). In addition, I estimate a savings of  ~$330 (US) in 

laboratory fees to process three water filters versus 60 frogs, per a pond (field-

related costs to visit sites not included; calculations available from O. Hyman 

upon request). These savings could be increased by ending resampling after the 

first positive result. Had I employed this strategy I would have eliminated an  
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entire sampling event (T4) for all but three ponds, and reduced the number of 

filters processed by  ~50%. 

 However, these results are likely to be host species and even population 

specific. Researchers will want to conduct similar studies to confirm the 

sensitivity of water filters in their own system before they incorporate this 

technique into Bd monitoring programs. Given the high percentage of false 

negatives for filters at any single time point, I do not recommend using this 

technique for the purpose of determining the presence or absence of Bd from 

areas where little is known about filter sensitivity. I instead recommend a 

combination of filtering with the swabbing survey recommendations of Skerratt et 

al. (2008). Combining filtering with animal sampling may be especially 

worthwhile when amphibian hosts are difficult to capture or in low abundance, as 

was demonstrated in No Name 13 pond in this study. 

 Filtering will be most useful for larger scale studies of systems where the 

dynamics of Bd are already relatively well understood and the sensitivity of this 

technique already assessed. Once the system-specific sensitivity of this technique 

is known, then filtering can be used to determine the spatial and temporal 

distribution of Bd on larger scales (e.g. landscapes/ years) with much finer 

resolution at greatly reduced costs. Given the low costs/effort and high potential 

sensitivity, I recommend this technique be considered for incorporation into long-

term Bd monitoring initiatives. 
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CONCLUSIONS 

 Sampling small volumes of water can be a viable technique to detect 

aquatic pathogens such as Bd. This has now been demonstrated in several systems 

including ponds (Walker et al. 2007, present study), lakes (Kirshtein et al. 2007), 

and streams and bromeliads (Cossel & Lindquist 2009). However, I 

found that particular attention must be paid to timing and resampling to improve 

its likelihood of Bd detection. It should be emphasized that these results represent 

a case study of environmental detection of Bd in a metapopulation of a single, 

seasonally breeding, chorusing amphibian species, with larvae that develop 

quickly (approximately 2.5 mo) in small, mostly ephemeral ponds. Given the 

considerable variation in the habitats, ecology, and natural history of Bd’s 

amphibian hosts, future studies need to examine how the sensitivity of this 

technique varies across systems with different hosts (e.g. long-lived larvae, 

continuous breeders, non-seasonal species, non-chorusing species) and habitats 

(e.g. streams, lakes, rivers, wetlands, bromeliads) before using it as a definitive 

diagnostic. 
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Table 1. Results of swabs of boreal chorus frogs (Pseudacris maculata) and filters 

for the detection of Batrachochytrium dendrobatidis (Bd) taken from 20 ponds on 

the Mogollon rim, Arizona, USA. Percent of swab-positive ponds (n = 17) testing 

Bd positive by filtration when ponds with potential false negative results were 

removed from analyses (i.e. Baker Lake and No Name 13); only 16 ponds tested 

Bd positive by swabs at T1 (data not shown). BS: breeding starts; BE: breeding 

ends; Tad: tadpoles; Meta: metamorphs. T1: initiation of breeding; T2: 1 to 2 wk 

post-breeding; T3: 3 to 4 wk post-breeding; T4: 10 wk post-breeding; na: missing 

samples 
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Table 2. Evaluation of the role of resampling in the detection of 

Batrachochytrium dendrobatidis (Bd) using filters of water from boreal chorus 

frog (Pseudacris maculata) breeding ponds. Every possible combination of 

sampling was examined to identify the survey regime that maximizes the 

likelihood of Bd detection (ideal resampling schedule). Increasing the number of 

sampling events was vital for increasing the number of ponds where Bd was 

detected by water filtration. The maximum percent of ponds testing falsely 

negative was calculated by subtracting the minimum percent of Bd+ ponds (n = 

18) detected by each sampling regime from 100. T1–T4 defined in Table 1 
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Figure 1. Timeline of pathogen sampling strategy from 20 ponds in relationship to 

the lifecycle stages of the boreal chorus frog (Pseudacris maculata) 
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Figure 2. Mean (± SEM) density of Batrachochytrium dendrobatidis (Bd) 

zoospore genome equivalents (GE) l–1 detected in water filters taken from 20 

chorus frog (Pseudacris maculata) breeding ponds at four different time points 

related to frog breeding and development. No significant differences were found 

(Kruskal-Wallis χ2
3 = 5.8, = 0.12)  



  35 

 

Figure 3. Proportion of ponds (n = 18) testing positive for the presence of 

Batrachochytrium dendrobatidis (Bd) at four different time points in the life cycle 

of boreal chorus frogs (Pseudacris maculata) by two sampling methods: filtration 

of 600 ml of pond water and swabbing ≥ 47 animals. (Two ponds were dropped 

from these analyses because an insufficient number of animals were swabbed 

from these ponds to have 95% confidence in their disease status.) When swabs 

were collected, they consistently detected Bd in a greater number of ponds than 

filters (swabs were not collected from tadpoles or metamorphs). na: not applicable 
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Figure 4. Cumulative proportion of ponds (n = 18) testing positive for the 

presence of Batrachochytrium dendrobatidis (Bd) by water filtration and 

swabbing of boreal chorus frogs (Pseudacris maculata). (Two ponds were 

dropped from these analyses because an insufficient number of animals were 

swabbed from these ponds to have 95% confidence in their disease status.) Ponds 

that tested positive by swabbing were considered Bd positive throughout the 

course of sampling; 95% of ponds tested Bd positive after two swabbing events. 

After three resampling events, filters were able to detect Bd in 16 of the 17 ponds 

(94%) testing Bd positive by swabbing ~ 60 animals 
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Chapter 3 

DYNAMICS OF BATRACHOCHYTRIUM DENDROBATIDIS IN A 

SEASONAL, POND-BREEDING HOST AND THEIR RELATIONSHIP TO 

AQUATIC NUTRIENTS  

 

ABSTRACT 

 Nitrogen (N) and phosphorus (P) are essential and often limiting nutrients 

in many ecosystems. Humans are increasing the amount of biologically available 

N and P at rates that far exceed levels seen in recent centuries, altering ecosystem 

patterns and processes. New evidence is emerging that these changes in N and P 

availability may increase the risk of infectious disease, especially for aquatic 

pathogens.   

 Batrachochytrium dendrobatidis (Bd) is a well-documented aquatic 

pathogen linked to the global decline of amphibian populations. Abiotic factors 

have been shown to play a role in Bd dynamics, but the influence of N and P on 

this pathogen have not been explored. This study examines the presence, 

prevalence, and intensity of Bd infections in populations of pond breeding chorus 

frogs (Pseudacris maculata) and whether these measures are correlated with 

aquatic concentrations of N and P.  

 Chorus frog densities, Bd presence, prevalence, intensity of infection, and 

aquatic zoospore densities were estimated along with aquatic concentrations of N 

and P from 20 independent frog breeding sites in each of two years. A mean of 57 

adult frogs were sampled per pond during breeding in each year (2,251 total). Bd 
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was detected in frogs from 19 of 20 ponds. Seventeen ponds harbored Bd for both 

years of sampling. Individual chorus frog populations had high Bd prevalence (up 

to 100%) and loads (up to 193,000 zoospore genomic equivalents per frog). 

Despite this, estimated chorus frog densities increased significantly over the two 

years of sampling. Individual ponds showed wide variation in mean 

concentrations of total P (18.1 - 381.1 µg l-1) and total N (20 - 1,460 µg l-1), but N 

and P concentrations were not correlated with any measures of Bd presence, 

prevalence, or infection severity. These results did not support the hypothesis that 

nutrients influence Bd dynamics, but instead demonstrate that Bd can persist 

across a wide range of aquatic nutrient concentrations.  

 Given the strong negative effects Bd has had on populations of susceptible 

amphibian species, it is unexpected that populations of chorus frogs persist with 

Bd at the high host and pathogen densities observed in this study. Yet, this finding 

parallels those of others documenting the persistence of susceptible species with 

high Bd prevalence. Future work should examine the mechanisms that enable 

these populations to persist with this pathogen.   

 

INTRODUCTION 

Nitrogen (N) and phosphorus (P) are essential and often limiting nutrients 

in ecosystems throughout the world (Elser et al. 2007). Humans are increasing the 

amount of biologically available N and P at rates that far exceed levels seen in 

recent centuries (Carpenter et al. 1998, Vitousek et al. 1997).  These changes are 

altering terrestrial and aquatic ecosystem patterns and processes (Smith et al. 
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1999, Elser et al. 2007).  Evidence is emerging that increased supplies of N and P 

to ecosystems may also cause increased risk of disease in humans and wildlife, 

especially aquatic diseases (Bruno et al. 2003, Bruning 1991, Epstein 1993, Frost 

et al. 2008; Harvell et al. 1999, Johnson et al. 2007, Johnson et al. 2010, King et 

al. 2010, Schotthoefer et al. 2011, Smith 2007).  

McKenzie & Townsend (2007) reviewed 34 studies of N, P, and infectious 

diseases that included a variety of human and wildlife pathogens. Most 

observations (93%) from these studies showed a positive correlation between 

increased nutrient availability and various measures of disease severity. In 

contrast, Marcogliese (2001) argues that while increases in nutrient availability 

may initially increase parasite abundance, high nutrient inputs and resulting 

eutrophication are most likely to decrease overall parasite abundance and 

diversity in favor of only a few, generalist species. Johnson et al. (2010) concede 

that the effects of nutrients will often vary according to the idiosyncrasies of the 

system being studied, but maintain that increased nutrient availability is still likely 

to exacerbate disease, especially for diseases caused by generalist pathogens with 

simple life cycles and direct transmission.  The goal of this study was to test how 

the dynamics of an aquatic, directly transmitted, generalist pathogen with a simple 

life cycle, the emerging infectious parasite Batrachochytrium dendrobatidis (Bd), 

are related to nutrient concentrations in pond water.  

Bd is the etiological agent of chytridiomycosis (Berger et al. 1998), a 

disease linked to the global decline and extinction of numerous amphibian species 

(Collins & Crump 2009). Bd is directly transmitted via flagellated cells called 
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zoospores, which encyst in adult amphibian skin where they develop into 

zoosporangia that release new zoospores into the environment (Berger et al. 

2005).  Zoospores may die, infect a new host, or reinfect their original host 

(Berger et al. 2005). As pathogen burdens (loads) increase on individual hosts, 

those susceptible to chytridiomycosis die from a reduced ability to osmoregulate 

(Voyles et al. 2009). Therefore, determining the factors that influence the ability 

of Bd to grow, reproduce, infect, or reinfect hosts is important for understanding 

Bd’s transmission dynamics and onset of chytridiomycosis.  

 Despite the clear links between Bd and amphibian decline, there is 

considerable variation in the responses of amphibian hosts to Bd, with some host 

populations experiencing marked declines while others persist (Daszak et al. 

2005, Hale et al. 2005, Lips et al. 2003, Lips et al. 2006, Rachowicz et al. 2006, 

Retallick et al. 2004). Although factors such as pathogen strain (Retallick & 

Miera 2007), host microbial communities (Harris et al. 2009), host immunity 

(Savage & Zamudio 2011, Woodhams et al. 2006), and population density 

(Briggs et al. 2010) contribute to the outcome of Bd introductions into amphibian 

populations, outbreaks of chytridiomycosis are often associated with specific 

environmental conditions, especially those related to water availability and 

temperature (Bosch et al. 2007, Bradley et al. 2002, Forrest & Schlaepfer 2011,  

Kriger et al. 2007, Kriger & Hero 2007a,b, Lips et al. 2003, Pounds et al. 2006, 

Raffel et al. 2010, Ron 2005, Rowley & Alford 2007, Savage et al. 2011, 

Schlaepfer et al. 2007, Woodhams et al. 2003). However, the focus on 

temperature and moisture as the major abiotic factors influencing the spread of Bd 
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and chytridiomycosis has overlooked other abiotic factors that could influence Bd 

dynamics, such as nutrient availability.  

 Nutrient inputs can influence the transmission of a directly transmitted 

pathogen such as Bd by indirectly altering host densities, altering host 

susceptibility to infection through behavioral or immunological shifts, or 

changing pathogen growth and vigor by providing additional resources directly to 

the pathogen or its competitors (Johnson et al. 2010).  Nutrients can influence the 

survival, health, abundance, and behavior of amphibian hosts (Bishop et al. 1999, 

Wood & Richardson 2009, Ficetola et al. 2011, Marco et al. 1999), which could 

alter rates of Bd transmission. The availability and form of nitrogen used in media 

influence Bd growth in culture (Piotrowski et al. 2004), indicating that variation 

in the availability of N and potentially P within amphibian or currently unknown 

hosts could influence disease dynamics by altering Bd growth rates and longevity.  

N and P availability could also indirectly influence Bd dynamics by altering 

abundance and feeding rates (DeMott & Gulati 1999, Makino et al. 2002, Sterner 

& Hessen 1994) of zoospore predators, such as zooplankton (Buck et al. 2011). 

This suggests another mechanism by which nutrient availability could influence 

Bd dynamics; namely, by altering zoospore densities in the aquatic environment, 

thereby reducing rates of environmental transmission (Woodhams et al. 2011).  

  In light of the rising evidence for the role of nutrients in the emergence of 

aquatic infectious diseases and the importance of understanding the abiotic factors 

that influence chytridiomycosis, I tested whether Bd dynamics are related to 

aquatic nutrient concentrations using populations of pond breeding boreal chorus 
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frogs (Pseudacris maculata).  Boreal chorus frogs were chosen because 1) they 

use a variety of wetland habitats capturing much of the natural variation in N and 

P concentrations, 2) they harbor Bd infections in the wild, 3) they suffer high rates 

of Bd-induced mortality (up to 80%) in the laboratory, and 4) very little is known 

about the distribution or dynamics of Bd in wild chorus frog populations.  The 

goals of this study were first to gain a detailed understanding of the distribution 

and dynamics of Bd in chorus frog populations. Secondly, I tested how chorus 

frog densities and the presence, prevalence, short-term changes in prevalence (a 

proxy for incidence), aquatic density of Bd zoospores and intensity of Bd 

infections in amphibian hosts correlated with pond-level concentrations of two 

major nutrients, N and P.   

 

METHODS 

Field Sites and Study Species 

 Water chemistry and disease data were collected from 20 ponds with 

breeding populations of boreal chorus frogs located over approximately 75 km2 

within Sitgreaves-Apache and Coconino National Forest in north-central Arizona 

(Table S1). This region is a matrix of forest (Petran Montane Conifer Forest and 

Great Basin Conifer Woodland) and livestock rangeland (Brown 1994). These 

forests are among the driest in North America, with annual rainfall varying from 

460-760 mm, so ranchers have constructed ponds to collect and hold natural run-

off to provide water for livestock. Amphibians often use these ponds to breed. 
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 Sites in this study included ephemeral ponds, perennial ponds, man-made 

cattle ponds, and one spring (Table S1).  Ponds were selected based on two 

criteria: (1) presence of breeding chorus frogs to ensure that studies were 

conducted within a range of N and P concentrations that the host species can 

tolerate, and (2) a minimum distance of 1 km from other ponds to ensure little to 

no mixing of frogs from each site (Kramer 1973). This distance enabled me to 

consider each pond as an independent data point. It also ensured that water 

chemistry measures were relevant to adults across years since there is little to no 

immigration or emigration by frogs to or from different ponds. Ponds had a mean 

maximum surface area of 1.59 ± 0.59 ha in 2009 and 2.3 ha ± 1.2 ha in 2010.  

 Immediately following snowmelt in late February to mid-March, boreal 

chorus frogs in Arizona aggregate in shallow areas of ponds for one to seven 

weeks to breed (O. Hyman, pers. obs.). Tadpoles develop over about 2.5 mo, with 

metamorphic frogs typically emerging when ponds begin to dry in mid-June and 

July. Adults and metamorphic frogs forage over the summer in upland forest 

surrounding ponds, overwinter under leaves, rocks, logs, etc. beneath the snow, 

and then return to ponds the following spring to breed.  This study focused on Bd 

dynamics in adults during breeding, as this is likely to be a key time for Bd 

transmission.  

Host and Pathogen Sampling 

 Swabs. Approximately 30 to 60 adult breeding chorus frogs were sampled 

for Bd infections in each pond by skin swab sampling (described in detail below) 
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from late February to early April in 2009 and late March to early May in 2010 to 

determine Bd prevalence at each pond where: 

 

Bd prevalence =  (# Bd positive animals/total # of animals sampled) 

 

These large sample sizes within a single life stage (adult) during one season 

(spring breeding) provide confidence in the accuracy of our Bd presence and 

prevalence data at the time of sampling (Skerratt et al. 2008). Sampling over two 

years also enabled me to test if Bd persisted in chorus frog populations over two 

breeding events and whether Bd infected populations showed evidence of decline 

over this period. 

  In 2009, Bd prevalence at each pond was estimated by swabbing about 60 

frogs at one time point coinciding with the initiation of breeding. In 2010, short-

term-changes in Bd prevalence in each pond were estimated as a proxy for Bd 

incidence by swabbing about 30 frogs at each of two time points: 1) when P. 

maculata breeding started (T1) and 2) about 1 week after the initial sampling (T2). 

Mean daily change in Bd prevalence (Δ prevalence) was used as a proxy for Bd 

incidence and calculated as: 

  

Δ Bd prevalence = (Bd prevalence at T2 – Bd prevalence at T1)/# days between 

sampling dates 
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All adult animals were swabbed between 1900 and 0100 hours to control for any 

diel variation.  Animals were captured by hand, wearing disposable nitrile gloves, 

which were changed after handling each individual to prevent the spread of Bd. 

All animals were collected from aquatic sites in the pond. The hands, feet, thighs, 

and vent of each frog were uniformly swabbed with a wooden toothpick 

(Retallick et al. 2006, Retallick & Miera 2007). Following swabbing, animals 

were toe-clipped to prevent resampling and released at the capture site. Swabs 

were placed in individual 2-ml screw-cap microcentrifuge tubes (USA Scientific, 

No.1420-9701) containing 70% ethanol. In addition, an unused swab was placed 

into a tube after finishing sampling at each site to act as a negative field control. 

All vials were immediately put on ice and stored at -20°C within 3 hours. All field 

equipment was rinsed with a 20% bleach solution and dried completely between 

collecting events to prevent contamination across sites. 

 Host density estimation. Relative host densities at each pond were 

assessed by calculating the animal capture rate at each pond, where: 

 

Animal capture rate = total number of animals captured/total sampling time. 

 

All times were calculated from capture rates of a single sampler (OJH) to control 

for any biases in experience.   

 Water filters. In addition to skin swabs, in 2009, water filtration (Hyman 

& Collins 2012) was used to estimate the densities of zoospores in the water 

column of each pond. Five separate 400 ml samples (2 l of total filtrate pond-1) 
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were collected from each pond on the day following animal swabbing by forcing 

water through individual 0.22-µm SterivexTM filters (Millipore Part No. 

SVGV01015).  Water samples were collected from four locations along pond 

edges, where frogs were present, and the fifth sample was collected from the 

bottom of the deepest part of the pond accessible by wading. A negative “field” 

control filter of 60 ml of phosphate buffered saline solution was included for each 

pond to ensure filters were not contaminated with Bd during the sampling 

process. In addition, individual 400 ml water samples from each pond were kept 

on ice, brought back to the laboratory, inoculated with 0, 10, 100, or 1000 

zoospores, filtered, extracted, and used to construct curves to standardize 

zoospore densities across ponds to account for pond level differences in DNA 

recovery during DNA extractions from filters. Following Kirshtein et al. (2007), 

each filter was drained, labeled, sealed in an individual Ziploc® baggie, and kept 

on ice for ≤5 hours until it could be frozen at -20°C in preparation for DNA 

extraction.  

 DNA extraction.  Swabs were extracted using the PrepMan UltraTM 

protocol (Boyle et al. 2004) with modifications of Retallick et al. (2006). Filters 

were defrosted and DNA extracted using a modified version of the Puregene 

protocol developed by Kirshtein et al. (2007) as described in Hyman & Collins 

(2012).  Bd negative and positive controls were used in all extractions. Extracted 

samples were stored at -20 °C for quantitative PCR analysis. 

 Real-time Taqman PCR assay. Samples were amplified using an 

Applied Biosystems 7900HT Sequence Detection System and a modified version 
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of the protocol developed by Boyle et al. (2004) and Garland et al. (2009) as 

described in Hyman & Collins (2012). Samples were run in duplicate with bovine 

serum albumin and exogenous internal positive controls (Exo IPC, Applied 

Biosystems Part No. 4308328).  Each 384-well plate also had a negative control. 

Bd status (positive/negative) and infection loads (zoospore genomic equivalents 

(GE)) were calculated as described in detail in Hyman & Collins (2012).  

Water Chemistry 

 Water samples were collected from each pond on the day following the 

first frog-swabbing period.  For each pond, five water samples were collected in 

new 50-ml copolymer centrifuge tubes (USA Scientific part no. 1500). One 

sample was collected about 1 m from shore at mid-depth from each of the N, S, E, 

and W compass points  (4 samples total) and one additional sample was collected 

from the deepest part of the pond accessible by a 2 m-length tube connected to a 

handheld pump. In addition, a negative control of 50-ml of NanopureTM water 

(poured from a carboy after pond sampling) and positive controls of 49 ml of 

pond water spiked with 1-ml of 50-µM P solution or 750-µM N solution were 

created at each pond.  All vials were stored on ice and frozen at -20 °C within 3 

hours of collection. Total nitrogen (TN) and total phosphorus (TP) concentrations 

of each unfiltered sample from 2009 and 2010 were estimated following standard 

methods after digestion (persulfate method; APHA 1998). Nutrient analyses were 

conducted using a Bran-Luebbe TrAAcs 800 system (Bran and Luebbe, Delavan, 

Wisconsin, USA). All chemical analyses were conducted within thirty days of 

sample collection by technicians at the Goldwater Environmental Laboratory at 
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Arizona State University. Quality assurance for nutrient analyses included 

NanopureTM field controls, sample splits, spike recovery, and routine evaluation 

of external standards and blanks. 

Data Analysis 

 The nutrient concentrations ([TP], [TN]) of each pond were estimated by 

calculating the mean of the five water samples. Aquatic zoospore densities were 

calculated as the mean of all five filters taken from each pond adjusted according 

to the standardized curves developed using spiked water from each individual 

water body.  Distributions of all variables were assessed for normality using 

Shapiro-Wilk W-tests for goodness of fit to a normal distribution. Bd prevalence 

data were arcsin-transformed. Nutrient and host density data were log-

transformed to approximate normality. The number of filters testing positive 

within a pond, the mean density of aquatic zoospores detected within a pond, and 

the mean Bd load at individual ponds in 2010 (T1 and T2) were all non-normally 

distributed despite transformations. Therefore, non-parametric Spearman’s rank 

correlations were used to compare these response variables to nutrient and host 

density data. 

 Univariate analyses were used to compare pond-level explanatory 

variables ([TN], [TP]) to pond-level response variables (host densities, Bd 

prevalence, Bd load, and Δ Bd prevalence) assuming linear responses. Quadratic 

responses were also fit to univariate analyses with [TP] to account for potential 

non-linear responses across the large range in [TP].  Host densities were also used 

as an explanatory variable in univariate analyses with disease measures. Mean Bd 
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prevalence and mean Bd load within each pond were compared across 2009, 2010 

T1, and 2010 T2 using paired t-tests.  Chorus frog density within each pond was 

compared across years using paired t-tests. Simple linear correlations were used to 

compare Bd load and Bd prevalence within each sampling period as well as Bd 

prevalence within ponds across years.   

 Mean [TP], [TN], host density, and Bd prevalence was compared between 

ponds testing Bd-positive versus Bd-negative by water filtration using t-tests. 

Nonparametric Spearman’s Rho correlations were used to compare the number of 

filters testing Bd-positive within an individual pond to [TP], [TN], host densities, 

Bd prevalence, and Bd loads in amphibian hosts. Nonparametric Spearman’s rank 

correlations were also used to compare pond-corrected mean zoospore densities to 

[TP], [TN], and host densities in each locality. Non-parametric Wilcoxon signed-

rank tests were used to compare [TP], [TN], and host densities between ponds that 

tested Bd-positive and Bd–negative by swabbing animals in 2010.  All statistics 

were calculated using JMP (Ver. 5.0.1.2, SAS) statistical software. 

 

RESULTS 

Swabs 

 A total of 2,251 individual adult chorus frogs were swabbed over two 

years, with a mean of 57 animals swabbed per pond annually. In 2009, ≥ 60 

individual frogs were collected from all except 5 ponds, and no fewer than 30 

animals were sampled from any individual pond (Fig. 1, Table S2). In 2010, 

fewer than 30 animals were sampled from only four ponds at T1 and only six 
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ponds at T2 (Fig. 2, Table S3).  No fewer than 25 animals were collected from 

any individual pond, with the exception of one pond from which no frogs were 

sampled at T2 (No Name 13), which was dropped from all subsequent analyses 

requiring T2 data (Fig. 2, Table S3).  Seven ponds had > 7 but ≤ 13 days between 

sampling events T1 and T2 (Table S3). All other ponds had 7 days between 

sampling (Table S3). 

 2009 swabs. In 2009, all but one pond (No Name 13) tested positive for 

Bd (Fig. 3). This pond had the fourth lowest frog density of all ponds sampled 

that year (Table S4). Bd prevalence in positive ponds varied from 2-93% (mean 

27 ± 6%; Fig. 1, Table S2). Mean Bd load at each site in 2009 varied from 4 - 

2,749 zoospore (zsp) genome equivalents (GE) with an overall mean (± SE) of 

568 ± 151 zsp GE across all sites (Fig. 1, Table S2).  

 2010 swabs. Three ponds tested Bd negative in 2010 (Fig. 2, Fig. 3, Table 

S2). These three sites had significantly lower frog densities than Bd positive sites 

(Wilcoxon, p = 0.01; Fig. 4). Bd prevalence in positive ponds ranged from 6-96% 

(mean 24 ± 6%) at T1 and 7-100% (mean 40 ± 7%) at T2 in 2010 (Fig. 2, Table 

S3).  Mean daily change in Bd prevalence (Δ Bd prevalence) at individual ponds 

ranged from a -2.9 – 7.3% daily increase (mean 2.3 ± 0.6%) in Bd prevalence 

over the time period between T1 and T2 (Fig. 2, Table S3). Mean Bd loads in 

2010 ranged from 20 to approximately 43,000 zsp GE with an overall mean of 

1320 ± 629 zsp GE at T1 and 4738 ± 2069 zsp GE at T2  (Fig. 2, Table S3). 

 Across time comparisons. Mean Bd prevalence was significantly higher 

at the second sampling point (T2) in 2010 as compared to T1 (paired t-testdf = 18, t-
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ratio = 3.85, p = 0.001) and 2009 (paired t-testdf = 18, t-ratio = 2.58, p = 0.02; Fig. 

5).  Mean Bd prevalence at sampling point 1 (T1) in 2010 was not significantly 

different from 2009 (paired t-testdf = 19, t-ratio = -0.7, p = 0.49; Fig. 5). Mean Bd 

loads showed the same trend, with significantly higher loads at T2 in 2010 as 

compared to T1 (paired t-testdf = 18, t-ratio = 3.02, p = 0.007) and 2009 (paired t-

testdf = 18, t-ratio = 3.12, p = 0.006; Fig. 5), but mean Bd load at T1 in 2010 was 

not significantly different from 2009 (paired t-testdf = 19, t-ratio = -0.68, p = 0.52; 

Fig. 5). Mean Bd load was positively correlated with Bd prevalence within ponds 

in 2009 (ANOVAdf =19, p < 0.0001; Fig. S1), and mean load in 2010 was 

correlated with Bd prevalence at T1 (ANOVAdf =19, p < 0.0001) and T2 

(ANOVAdf =18, p < 0.0001; Fig. S1). Bd prevalence in 2009 was correlated with 

prevalence at T1 (ANOVAdf =19, p = 0.0001) and T2 (ANOVAdf =18, p = 0.0003) in 

2010 (Fig. 6), indicating ponds have consistently high or low prevalence each 

year. Despite high Bd prevalence and loads in many of the chorus frog 

populations I surveyed, no mass-mortalities were observed in either year. In fact, 

relative frog densities increased from 2009 to 2010 (paired t-testdf = 19, p = 0.0003; 

Fig. 7). 

Water Filters 

 Twenty of the 100 water filters sampled tested positive for the presence of 

Bd (Table 1). Ten ponds had at least one filter test Bd positive (Table 1). The 

remaining 10 ponds did not have a single Bd positive filter, despite animals from 

nine of these ponds testing Bd positive. Overall, filters detected Bd in only 53% 

(10 of 19) of the ponds that tested Bd positive by swabbing, and 79% of 
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individual filters failed to detect Bd in ponds where at least one frog tested Bd 

positive. Zoospore densities in the water column ranged from ca. 6-1123 zsp l-1 

(mean: 50 ± 26 zsp l-1; Table 1). The number of filters testing Bd positive within a 

pond was positively correlated with Bd prevalence in breeding adult chorus frogs 

(Spearman’s Rho = 0.70, p = 0.0006; Fig. 8) and the mean concentration of 

aquatic zoospores detected within a pond (Spearman’s Rho = 0.95, p < 0.0001; 

Fig. 8).  Mean aquatic zoospore density was also significantly positively 

correlated with Bd prevalence in frogs (Spearman’s Rho = 0.48, p = 0.05).  Ponds 

testing Bd positive by filtration had a significantly higher prevalence of Bd in host 

animals (t-testdf = 18, p = 0.006; Fig. 9).  

Disease and Nutrient Analyses 

 Water chemistry. Mean concentrations of TP in individual ponds ranged 

from 18.1-381.1 µg-P l-1 with an overall mean concentration of 103.3 ± 18.9 µg-P 

l-1 and 76.3 ± 8.5 µg-P l-1 across all ponds in 2009 and 2010 respectively 

(TableS4). Mean TN concentrations in individual ponds ranged from 20 – 1,460 

µg-N l-1 with an overall mean concentration of 650 ± 60 µg-N l-1 and 380 ± 70 

µg-N l-1 across all ponds in 2009 and 2010 respectively (Table S4). A recent 

survey of TP and TN in Canadian wetlands found concentrations of 43.4 ± 12.4 

µg-P l-1 and 117 ± 24 µg-N l-1 in unfiltered water taken from low human impact 

wetlands and 114.7 ± 12.4 µg-P l-1 and 862 ± 53 µg-N l-1 in wetlands with high 

agricultural and livestock impact (King et. al 2010). Johnson et al. (2007) cite 

similar TP and slightly higher TN concentrations in unfiltered water taken from 

forested (43 µg-P l-1 and 1235 µg-N l-1) and agricultural (348 µg-P l-1 and 2859 
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µg-N l-1) amphibian habitats in Wisconsin. Total P in 2009 and 2010 and TN 

concentrations in 2009 and 2010 were positively correlated across years 

(ANOVAdf = 19, p = 0.004 and p = 0.01, respectively), indicating that TN and TP 

concentrations stayed consistently higher or lower within individual ponds in both 

years.   

 Host densities. Frog capture rates within individual ponds decreased 

significantly as mean pond TP concentration increased in both 2009 

(ANOVAdf=19, p = 0.04) and 2010 (ANOVAdf=19, p = 0.01; Fig. 10, Table S5). 

Total N did not show any consistent relationship with host densities in either 2009 

(ANOVAdf=19, p = 0.23) or 2010 (ANOVAdf=19, p = 0.58; Fig 10, Table S5).  

 Animal swabs.  The single Bd negative pond in 2009 had the second 

lowest [TN] (350 µg N l-1) and the third lowest [TP] (31.5 µg-P l-1) of all ponds 

sampled that year (Table S4).  Bd prevalence and load in 2009 were not 

significantly related to [TP], [TN], or amphibian density in univariate analyses 

using both linear and, in the case of [TP], quadratic fits (Table 2). Mean [TP] and 

[TN] at the three Bd negative sites in 2010 were not significantly different from 

Bd positive sites (Wilcoxon, p = 0.20 and 0.75, respectively).  Delta Bd 

prevalence in 2010 was not related to [TP], [TN], or host densities in 2009 or 

2010 (Table 3) nor was Bd prevalence or load at T1 and T2, with the exception of 

mean host load at T2 being positively correlated with host density (Spearman’s 

Rho = 0.55, p = 0.02; Table S6).  

 Water filters.  The number of filters testing Bd positive within a pond and 

mean zsp density in the water column were not correlated with nutrient 
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concentrations (Table 4). Ponds with filters testing Bd positive did not have 

significantly different [TP], [TN], or frog densities than ponds that tested Bd 

negative by filtration (t-testdf-18, p = 0.8, 0.4, and 0.8, respectively; Fig. 9).    

 

DISCUSSION 

Bd Dynamics in Chorus Frogs 

 Breeding plays an important role in the transmission of Bd between adult 

chorus frogs. As breeding progresses, Bd loads increase and the pathogen spreads, 

likely through direct contact with infected animals and environmental 

transmission from free-swimming zoospores. During breeding, Bd prevalence 

increased daily by a mean of approximately 2%, including an increase as high as 

7% per day. At a 7% daily increase, Bd could spread through an entire population 

in as little as two weeks.  High Bd prevalence (up to 100%) in many study ponds 

indicates that Bd indeed can infect the entire breeding adult population.   

 In 2009, 19 of 20 populations tested Bd positive, 17 of which tested Bd 

positive the following year. Despite this pathogen’s ubiquity, there is clearly a 

high level of variation in the prevalence, Δ Bd prevalence, and intensity of Bd 

infections across individual ponds.  The significant increase in prevalence and 

infection intensity over a one-week period during breeding in 2010 suggests that 

much of this variation is a function of time: as breeding progresses the pathogen 

spreads.  Yet variation in Bd prevalence is not explained by time alone.  For 

example, Bd prevalence within each pond was correlated between years. High 

prevalence ponds remained high while low prevalence ponds remained low, 
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suggesting that there are pond-specific factors that regulate Bd transmission rates. 

Also, ponds had very different rates of Bd spread over similar time periods, 

ranging from ca -2.9 to 7.3% per day. If Bd prevalence increases non-linearly, 

these differences could be related to timing of sampling. Alternatively, these 

pond-level differences in prevalence and Δ prevalence could be a result of pond-

specific factors. 

 Chorus frog densities may be one of these factors. The three ponds that 

tested Bd negative in 2010 had the lowest chorus frog densities of all the ponds 

sampled that year. The absence of Bd from these populations is not for lack of 

introduction as Bd was detected (though at very low prevalence) in two of these 

ponds in the previous year and in water from the third pond in 2010 (Hyman & 

Collins 2012). These observations indicate that there may be a threshold density 

below which Bd is not able to invade or perhaps persist in chorus frog 

populations. This is surprising, as a multi-host pathogen, such as Bd, should be 

able to spread and persist independent of any central host’s density as long as 

there is a sufficient density of reservoir hosts to maintain transmission (de Castro 

& Bolker 2005). Other amphibians known to harbor Bd, including tiger 

salamanders (Ambystoma tigrinum, Davidson et al. 2003), have been captured at 

these Bd-negative sites during chorus frog breeding, so these are not single-host 

systems. However, it may be possible that the overall density of amphibians is 

below some critical threshold, preventing Bd from invading and persisting.  

 I found mixed evidence in support of the hypothesis that chorus frog 

densities influence Bd transmission once it has invaded a population. Host density 
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was consistently positively correlated with the prevalence, intensity, and Δ 

prevalence of Bd infections in both years. However, with the exception of the 

correlation between chorus frog density and mean Bd load at the second sampling 

period in 2010, none of these correlations were statistically significant. These 

mixed results suggest that Bd may spread through a combination of density-

dependent (host contacts) and density-independent (environmental transmission 

through aquatic zoospores from alternate hosts) mechanisms.  

Chorus Frogs Persist with Bd 

 Despite high Bd presence (up to 95% of sites), prevalence (up to 100%), 

and pathogen loads (up to 193,000 zoospore GE), chorus frog populations 

persisted at high population densities with Bd for at least two generations.  There 

was no evidence of Bd related, mass die-offs in any populations I surveyed. In 

fact, chorus frog abundance increased significantly over the two years of this 

study.  

 The mechanisms that enable these populations to persist with Bd remain 

unclear. Chorus frogs taken from the same sites suffered high levels of Bd-

induced mortality in the laboratory (Retallick & Miera 2007), so it is unlikely that 

these frogs are innately resistant to chytridiomycosis.  Bd strains in these 

populations may have attenuated in virulence (Retallick & Miera 2007), or there 

may be environmental factors that enable these frogs to tolerate or remove Bd 

infections (e.g. Forrest & Schlaepfer 2011, Retallick & Miera 2007). 

Alternatively, given their high reproductive capacity and quick rates of 

development (Smith 1987), chorus frog populations may be robust to high rates of 
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Bd-related adult mortality. Chorus frogs collected from ponds used in this survey 

did not suffer mortality until 20-30 days post Bd exposure in laboratory 

experiments (Retallick & Miera 2007), sufficient time for animals to breed and 

leave a pond. If young of the year are able to survive and reproduce the following 

year (Smith 1987), the population could persist. Future experiments should 

examine the Bd-related mortality rates of adults and juveniles in the wild to 

clarify the mechanisms that enable these populations of apparently susceptible 

animals to resist Bd-related decline.  

Aqueous Nutrient Concentrations and Bd Dynamics 

 Our results do not support the hypothesis that increasing nutrient 

availability increases pathogen transmission or disease severity in this directly 

transmitted, multi-host pathogen, Bd. Indeed, I found no evidence that nutrient 

concentrations play any role, positive or negative, in Bd transmission during 

breeding. Sites demonstrated wide variation in [TP] and [TN], representative of 

undisturbed and nutrient-rich wetlands (King et al. 2010, Johnson et al. 2007). 

Despite this wide variation in nutrient concentration, I found no association 

between [TN] and [TP] concentrations and any measures of pathogen 

transmission or disease severity, including Bd prevalence in amphibian hosts, 

intensity of Bd infections, rates of Bd transmission (as measured by Δ Bd 

prevalence), densities of aquatic zoospores, and frequency of Bd detection from 

water samples. These results clearly indicate that in habitats where amphibians are 

present, Bd can spread and persist across a wide range of nutrient concentrations.  
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 These findings run counter to those that have linked nutrient 

concentrations to the abundance and diversity of a variety of pathogens (Johnson 

et al. 2011), especially of amphibians (e.g. Johnson et al. 2007, King et al. 2010, 

Schotthoefer et al. 2011). My results do not preclude the ability of nutrients to 

influence Bd dynamics.  Assuming Bd is not able to reproduce outside of 

amphibian hosts (but see Kilburn et al. 2011), extreme eutrophication that 

eliminates amphibians from a habitat (e.g. Bishop 1998) would obviously 

eliminate Bd as well. Thus, it is possible that N and P concentrations beyond the 

levels found in this study may influence Bd dynamics. In addition, I only tested 

for evidence that nutrients influence Bd transmission and growth in adult frogs 

during breeding. Nutrients may instead influence these rates during larval 

development or metamorphosis. I did not directly measure Bd presence, 

prevalence, or intensity of infection in these life stages. However, I found no 

evidence that N or P concentrations in the previous year have any influence on Bd 

presence, prevalence, or transmission in adults in the next year. Thus, if N and P 

do influence Bd dynamics in pre-metamorphic life stages, these effects do not 

appear to carry over to breeding adults in the subsequent generation. Future 

studies should examine how nutrient availability may influence Bd dynamics in 

these life stages.  

 Although nutrient concentrations had no apparent effect on Bd presence, 

transmission, or aquatic zoospore densities, they were related to host density.  

Chorus frog densities were negatively correlated with [TP] in both 2009 and 

2010. Phosphate has been shown to have direct toxic effects on some amphibians 
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(Earl & Whiteman 2010, Hamer et al. 2004) but only at extremely high 

concentrations (15 – 200 mg-P L-1) not observed in these ponds. It is therefore 

unlikely that this reduction in chorus frog density resulted from direct toxic 

effects at the TP concentrations I encountered. This correlation could be the result 

of an indirect negative influence of P on amphibian survival, as demonstrated in 

mesocosm experiments with Bufo boreas (Wood & Richardson 2009).  It is also 

possible that factors that correlate with P, such as landscape alteration (Allan 

2004) or livestock use (Knutson et al. 2004), are the causal mechanisms 

underlying this trend. For example, Ficetola et al. (2011) found a negative 

relationship between phosphate concentration and fire salamander (Salamandra 

salamandra) distribution. In their study, landscape-level analyses found that lower 

[P] were correlated with greater natural land cover and increased stream 

permanence, factors vital to fire salamander reproduction. In the case of my study, 

;oss of chorus frog habitat, such as forest and grasslands, from areas surrounding 

ponds could similarly result in higher [TP] and lower frog densities. Alternatively, 

Knutson et al. (2004) found that cattle use was positively correlated with TP 

concentrations in wetland habitats. Cattle could be raising [TP] and lowering 

chorus frog abundance at our sites by altering pond habitat or trampling 

amphibians (Schmutzer et al. 2008).  Clarifying the mechanisms that link TP 

concentrations to amphibian density in this and other studies may be important in 

the face of landscape change, rising P loading, and global amphibian decline 

(Allan 2004, Carpenter et al. 1998, Stuart et al. 2004).  
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Implications for Bd Monitoring and Management 

These results have several important implications for Bd monitoring and 

management initiatives. First, my data show that detecting Bd is time sensitive. 

Numerous other studies have documented seasonality in Bd prevalence (Savage et 

al. 2011, Retallick et al. 2004) but my findings demonstrate that Bd prevalence 

can vary significantly even within a season. Bd prevalence and loads increased 

significantly over a single week, and in one case a pond initially testing Bd 

negative, tested Bd positive only a few days later, despite sampling ≥ 30 animals 

at both time points. Bd loads increased in a similar manner. This will be important 

for the design of field studies such as this one and others that use single sample 

presence, prevalence, and load data to determine environmental correlates of 

disease dynamics (e.g., Raffel et al. 2010, Piovia-Scott et al. 2011, Walker et al. 

2010). It will be even more important for monitoring initiatives looking for “Bd-

free” sites for reintroductions of captively reared species (see USFWS 2007).   

My findings indicate that, in the case of seasonally breeding/chorusing frogs, it is 

best to monitor animals late in the breeding season when Bd prevalence peaks. I 

also found that, despite its advantages, water filtration is not a highly sensitive 

technique, detecting only 53% of ponds testing Bd positive by swabbing. Timing 

will be key for detecting Bd using this method as well (see Hyman & Collins 

2012 for a detailed discussion).  

The nearly ubiquitous presence of Bd in Arizona chorus frog populations 

is also relevant for the management of two locally threatened amphibian species: 
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the Northern Leopard Frog (Rana [Lithobates] pipiens) and the Chiricahua 

Leopard Frog (Rana [Lithobates] chiricahuensis).  Once locally abundant, 

Northern Leopard Frogs (NLF) and Chiricahua Leopard Frogs (CLF) have 

declined markedly in Arizona (Clarkson & Rorabaugh 1989, Theimer et al. 2011).  

As a result, the NLF is being considered for federal listing in the western portion 

of its range (Smith & Keinath 2007). Likewise, the CLF is federally protected 

under the U.S. endangered species act and is being captively reared and 

reintroduced to areas surrounding our study sites (USFWS 2007).  Bd may have 

played a role in the declines of these species (USFWS 2007), so managers will 

want to know the distribution of Bd to inform management and reintroduction 

decisions. The nearly ubiquitous and persistent presence of Bd in chorus frogs 

implicates this species as a reservoir host for Bd.  Thus, leopard frog 

reintroductions should avoid areas with chorus frogs. Also, when possible, more 

effort should be invested in monitoring leopard frog populations that overlap with 

chorus frogs, as these populations may be at higher risk of disease-related decline 

and local extinction (de Castro & Bolker 2005).  

The emergence of chytridiomycosis has given rise to amphibian “arks” as 

a means of conservation (Gewin 2008). Under this model, amphibians that are 

likely to disappear as a result of imminent Bd introductions are reared in captivity 

until they can be successfully released back into the wild (Gewin 2008).  One 

issue with this technique is that, once Bd has arrived, it is extremely hard if not 

impossible to eradicate (Lubick 2010), making reintroductions difficult. The 

absence of Bd from low-density chorus frog populations, despite its detection in 
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previous years, provides encouraging evidence that Bd can be lost from a system 

after its introduction. Unfortunately, maintaining low amphibian densities to 

prevent disease outbreaks runs counter to the goals of repatriation, which strive to 

establish robust populations that can maintain genetic diversity and tolerate 

stochastic events (USFWS 2007).  Furthermore, this strategy will be extremely 

difficult in systems with multiple hosts that can act as pathogen reservoirs, such as 

the tropics (Lubick 2010).  

   

CONCLUSIONS 

 I found no evidence that Bd transmission was influenced by nutrient 

availability. This runs counter to other studies that found clear links between 

nutrients and aquatic infectious diseases (Johnson et al. 2010).  Although I cannot 

reject the hypothesis that nutrients can influence Bd dynamics, I found no 

evidence to suggest this. These findings contribute to a growing body of literature 

examining the role of nutrients in the emergence and transmission of infectious 

disease (Johnson et al. 2010, McKenzie & Townsend 2007), which may suffer 

from an under-reporting of negative results (McKenzie & Townsend 2007). Our 

findings also add new information to the suite of abiotic conditions that Bd is able 

to tolerate.   

 Given the strong negative effects Bd has had on populations of susceptible 

amphibian species (Bosch et al. 2001, Lips et al. 2006, Muths et al. 2003, 

Rachowicz et al. 2006), the ability of chorus frog populations to persist with Bd at 

high host densities despite suffering from high rates of chytridiomycosis in the 
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laboratory (Retallick & Miera 2007) is unexpected, though not without precedent 

(Murphy et al. 2009, Pearl et al. 2009, Pilliod et al. 2010, Piovia-Scott et al. 2010, 

Savage & Zamudio 2011). The consistent detection of Bd across years at many of 

our sites suggests that Bd has become endemic in chorus frog populations and 

implicate this species a reservoir host to Bd (Reeder et al 2012). Clarifying the 

mechanisms that enable chorus frogs and other susceptible species to persist with 

Bd will add to our understanding of how host populations respond to the 

introduction of potentially virulent pathogens and aid in the development of 

management strategies for Bd and other infectious diseases.  
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Table 1. Detection rates and densities of Batrachochytrium dendrobatidis (Bd) 

zoospores (zsp) based on five water filters collected from each of 20 ponds. GE = 

genome equivalents 

 

  

Pond # filters Bd + 
(n=5) 

Max zsp l-1 
(GE) 

Mean zsp l-1 
(GE) 

% Bd prevalence  
from swabs 

Baker 0 0 0 2 
Bar D 0 0 0 24 
Brolliar Park 0 0 0 13 
Calloway 0 0 0 10 
Clints 0 0 0 2 
Mahan 0 0 0 25 
McClure 0 0 0 5 
No Name 13 0 0 0 0 
Twin 0 0 0 15 
Van Deren 0 0 0 13 
Brolliar Wet 1 30.34 6.07 16 
Mud 1 231.59 46.32 2 
No Name 7 1 8.3 1.67 62 
Tinny 1 5.79 1.16 25 
ZZ 1 66.3 13.3 20 
Alder 2 40.04 13.47 55 
Salmon 2 19.57 4.54 16 
27 mi 3 23.15 8.76 66 
Aspen 4 1122.5 249.68 93 
T bar 2 4 226.5 150.6 59 
Total Bd+ Ponds 10 - - 19 
Mean - 177.4 49.6 27 
S.E.M. - 108.4 26.5 6 
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Table 2. Fit of linear and quadratic responses (total phosphorus only) of 

Batrachochytrium dendrobatidis (Bd) prevalence and load to nutrients (TP = total 

phosphorus, TN = total nitrogen) and host densities (capture rate) of adult chorus 

frogs (n ≥ 30 per pond) collected during breeding from 20 ponds on Arizona’s 

Mogollon Rim in 2009 

 
 

 
 
 
 

 

  

Response var Explanatory var Relationship N 
Adjusted R2 

(linear, quadratic) 
p 

(linear, quadratic) 

Arcsin Bd Prevalence log TP - 20 -0.04, -0.1 0.60, 0.87 

Arcsin Bd Prevalence TN Flat 20 -0.05, NA 0.90, NA 

Arcsin Bd Prevalence capture rate + 20 -0.02, NA 0.42, NA 

log mean Bd load log TP - 20 -0.04, -0.08 0.67, 0.80 

log mean Bd load TN + 20 -0.05, NA 0.75, NA 

log mean Bd load capture rate + 20 0.13, NA 0.06, NA 
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Table 3. Fit of linear and quadratic responses of 2010 Δ Batrachochytrium 

dendrobatidis (Bd) prevalence to nutrients (TP = total phosphorus, TN = total 

nitrogen) and host densities of adult chorus frogs (n ≥ 30 per pond) collected 

during breeding from 20 ponds on Arizona’s Mogollon Rim 

Response 
variable Explanatory variable Direction N 

Adjusted R2  
(linear, 

quadratic) 

p  
(linear, 

quadratic) 
Δ Bd prevalence log TP (2009) flat 19* -0.06, 0.05 0.99, 0.25 
Δ Bd prevalence TN (2009) - 19* -0.03, NA 0.56, NA 
Δ Bd prevalence Capture rate (2009) + 19* 0.03, NA 0.21, NA 
Δ Bd prevalence log TP (2010) + 19* -0.04, -0.08 0.46, 0.74 
Δ Bd prevalence log TN (2010) + 19* -0.04, NA 0.55, NA 
Δ Bd prevalence Capture rate (2010) + 19* 0.02, NA 0.25, NA 
* The pond with only 1 disease sampling point (No Name 13) could not be included in analyses 
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Table 4. Spearman correlations comparing total phosphorus (TP), total nitrogen 

(TN), frog capture rate, and prevalence of Batrachochytrium dendrobatidis (Bd) 

infections to two different measures of aquatic zoospore densities: (1) number of 

water filters testing Bd positive within a pond (# Bd positive filters) and (2) mean 

density of aquatic zoospores (zsp l-1) detected in each pond. Ponds with higher Bd 

prevalence in hosts had higher densities of aquatic zoospores, and number of 

filters testing Bd positive within a pond was positively correlated with aquatic 

zoospore density.  Nutrients and host densities were not related to aquatic 

zoospore densities   

Response var Explanatory var N Rho p 
# Bd+ filters TP 2009 20 -0.07 0.76 
# Bd+ filters TN 2009 20 -0.18 0.45 
# Bd+ filters Capture Rate 2009 20 0.06 0.81 
# Bd+ filters Bd prevalence 2009 20 0.7 0.0006 
# Bd+ filters mean zsp l-1 20 0.95 < 0.0001 
mean zsp l-1 TP 2009 20 -0.11 0.64 
mean zsp l-1 TN 2009 20 -0.3 0.21 
mean zsp l-1 Capture Rate 2009 20 -0.003 0.99 
mean zsp l-1 Bd prev 2009 20 0.55 0.01 
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Figure 1. Batrachochytrium dendrobatidis (Bd) prevalence and mean infection 

intensity (load) in 20 separate populations of adult boreal chorus frogs during 

breeding on Arizona’s Mogollon rim in 2009. (a) Bd prevalence at each of 20 

ponds. Numbers above bars represent sample size if n < 60.  Error bars represent 

Bayesian 95% central confidence intervals. (b) Mean Bd load (G.E. = genome 

equivalents) from all individual frogs testing Bd positive within a pond. Note 

logarithmic scale.  Error bars represent  ± 1 S.E.M.  
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 Figure 2. Batrachochytrium dendrobatidis (Bd) prevalence (a), mean load (b), 

and Δ Bd prevalence (c) in 20 populations of boreal chorus frogs sampled during 

breeding at two time points (T1 and T2) separated by about one week on 

Arizona’s Mogollon Rim in 2010. Error bars in (a) represent 95% confidence 

intervals and ± 1 S.E.M in (b) 
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Figure 3. Map of ponds where chorus frogs tested positive or negative for the 

presence of Batrachochytrium dendrobatidis (Bd) in 2009 and 2010 (n ≥ 25 

animals pond-1) 
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Figure 4. Densities of adult boreal chorus frogs were significantly higher at sites 

testing positive for the presence of Batrachochytrium dendrobatidis (Bd) by swabs 

in 2010 (Wilcoxon, p = 0.01) 

  



  72 

 

Figure 5.  Mean Batrachochytrium dendrobatidis (Bd) prevalence (a) and (b) 

intensity of infection (load) from boreal chorus frogs (n ≥ 25 pond-1) collected 

once in 2009 and at two time points (T1 and T2) in 2010 from each of 20 ponds in 

Arizona. Bd prevalence and load increased significantly at the second sampling 

point in 2010 (paired t-testdf = 19,18, t-ratio = 3.85 and 3.02, p = 0.001 and 0.007, 

respectively).  Letters above columns represent statistical differences. Error bars 

represent ± 1 S.E.M. T1: swabs collected at the beginning of breeding season; T2: 

swabs collected 1-2 weeks later at the end of breeding 
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Figure 6. Prevalence of Batrachochytrium dendrobatidis (Bd) in populations of 

boreal chorus frogs in 2009 is correlated with Bd prevalence in the same 

populations in the following year. (a) Correlation between Bd prevalence in 2009 

and T1 in 2010 (ANOVAdf =19, r2 = 0.57, p = 0.0001). (b) Correlation between Bd 

prevalence in 2009 and T2 in 2010 (ANOVAdf =18, r2 = 0.55, p = 0.0003) 
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Figure 7. Relative frog densities, as measured by capture rate in each pond, 

increased significantly from 2009 to 2010 (paired t-testdf = 19, p = 0.0003), despite 

high prevalence of Batrachochytrium dendrobatidis 
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Figure 8. The number of filters detecting Batrachochytrium dendrobatidis (Bd) 

within a pond was positively correlated with Bd prevalence in breeding adult 

chorus frogs (Spearman’s Rho = 0.70, p = 0.0006) as well as the mean 

concentration of aquatic zoospores detected within a pond (Spearman’s Rho = 

0.95, p < 0.0001). G.E. = genome equivalents 
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Figure 9. Comparison of mean (a) total phosphorus (TP), (b) total nitrogen (TN), 

(c) frog sampling rate, and (d) disease prevalence from ponds testing positive 

(n=10) versus negative (n=10) for the presence of Batrachochytrium 

dendrobatidis (Bd) by water filtration. Ponds testing Bd positive by filtration had 

significantly higher Bd prevalence in host animals (t-testdf = 18 , p = 0.006). Total 

P, TN, and frog density were not significantly different in ponds with water 

testing Bd positive versus Bd negative (t-testdf-18, p = 0.8, 0.4, and 0.8, 

respectively)  
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Figure 10. Rates of chorus frog capture within each pond were negatively 

correlated with the aquatic concentrations of total phosphorus in 2009 (a; 

ANOVAdf=19, p = 0.04) and 2010 (c; ANOVAdf=19, p = 0.01). There were no 

consistent or statistically significant trends between host density and TN in either 

year (b & d) 
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Chapter 4 

HOST LIFE HISTORY AND ENVIRONMENT FACILITATE PERSISTENCE 

WITH A VIRULENT PATHOGEN 

 

ABSTRACT 

The amphibian disease, chytridiomycosis, is an unambiguous example of 

the negative effects infectious diseases can have on wildlife populations. This 

disease, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is 

linked to amphibian declines across the globe. Yet there is considerable variation 

in population-level responses to Bd introductions, ranging from host extinction to 

long-term persistence with Bd. Detailed descriptions of Bd dynamics in 

populations of susceptible hosts are fundamental to identifying the factors that 

enable these populations to persist with this pathogen.  

In Arizona, populations of boreal chorus frogs (Pseudacris maculata) may 

persist with Bd for several years at high host and pathogen densities. The 

mechanisms underlying this ability to persist with Bd remain unclear.  One 

hypothesis is that chorus frogs may be tolerant of Bd infections, enabling 

individuals to survive and reproduce despite high levels of Bd infection. 

Alternatively, high temperatures reached in ephemeral breeding pools commonly 

used by chorus frogs may “rescue” host populations by reducing or removing Bd 

infections from developing larvae, resulting in increased survival of young-of-the-

year to maturity and enabling population persistence.  
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Here I analyze a simple, matrix-based model of a chorus frog population 

to understand the relative importance of juvenile and adult survivorship for 

projected population growth (λ). Then, the prevalence and intensity of Bd 

infections during chorus frog breeding and development are described in detail 

and combined with laboratory experiments to test the roles of host tolerance and 

environmental rescue in chorus frog population persistence.   

A time-based matrix population model found that when females are highly 

fecund, projected population growth is most sensitive to rates of survival in 

young-of-the-year froglets as opposed to adults. The model also shows that chorus 

frog populations can persist with 100% annual mortality in adults, but not young-

of-the-year. This suggests that mechanisms that enhance survival of recently 

metamorphosed froglets will be important for chorus frog population persistence. 

Controlled laboratory experiments found that adult frogs with natural Bd 

infections suffered 85% mortality with no mortality in uninfected controls, 

providing minimal support for host tolerance of Bd infections playing a role in 

population persistence. Field studies found Bd prevalence in summer-emerging 

froglets was significantly lower than Bd prevalence in adults sampled from the 

same ponds in spring (paired t-testdf=14, p = 0.0001), with 11 of 15 spring-positive 

ponds testing negative when sampling froglets in the summer. Experimental heat-

treatment at naturally relevant temperatures (29 °C) removed Bd infections from 

developing chorus frog larvae, indicating that warm water temperatures remove 

Bd infections during tadpole development. Also, intensive weekly surveys from 

two ponds found that Bd infections were completely absent from the larval cohort 
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in a warmer, ephemeral pond, while Bd persisted in larvae and newly 

metamorphosed froglets in a deeper, cooler, perennial pond.  

These results support the hypothesis that warm water temperatures reduce 

Bd prevalence in developing larvae and explain the reduction and absence of Bd 

from summer emerging froglets, which may ultimately enhance the likelihood of 

chorus frog population persistence. In combination, these results provide evidence 

that host life history and environment may interact to enable populations of 

susceptible hosts to persist despite high levels of disease-induced mortality.   

 

INTRODUCTION 

Infectious disease emergence may be increasing in frequency (Daszak et 

al. 2000, Harvell et al. 1999, Aguirre & Tabor 2008, Jones et al. 2008, Smith et al. 

2009).  This trend has been noted in several emerging wildlife diseases, resulting 

in large-scale population declines and even species extinctions (Daszak et al. 

1999, Dobson & Foufopoulos 2001, Harvell et al. 1999, Johnson & Paull 2011). 

Infectious diseases present new challenges to historical conservation strategies 

because they readily cross park and preserve borders (Cheng et al. 2011, Lips et 

al. 2006). In cases where we cannot reliably prevent pathogen introduction, 

identifying the factors that influence host-pathogen dynamics and enable 

populations of susceptible hosts to persist will enrich our understanding of the 

processes that control these interactions while contributing to management 

decisions (Bielby et al. 2008). This study examines the mechanisms that enable  
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host populations of boreal chorus frogs (Pseudacris maculata) to persist with the 

emerging infectious disease chytridiomycosis.  

Chytridiomycosis is an example of the challenges infectious diseases 

present to species conservation. This disease is caused by the pathogenic fungus 

Batrachochytrium dendrobatidis (Bd; Berger et al. 1998). Bd is linked to the 

decline and extinction of numerous amphibian species, many from “pristine” 

habitats and preserves (Cheng et al. 2011, Lips et al. 2006, Rachowicz et al. 

2006).  There is, however, variation in the responses of amphibian hosts to Bd, 

with some host populations declining markedly while others persist (Briggs et al. 

2010, Collins & Crump 2009, Daszak et al. 2005, Hale et al. 2005, Lips et al. 

2003, Lips et al. 2006, Murphy et al. 2009, Pearl et al. 2009, Pilliod et al. 2010, 

Rachowicz et al. 2006, Piovia-Scott et al. 2010, Retallick et al. 2004, Ryan et al. 

2008, Voordouw et al. 2010). Evidence supports several non-mutually exclusive 

hypotheses to explain this variation, including host resistance/tolerance (Harris et 

al. 2009, Savage & Zamudio 2011, Voordouw et al. 2010), pathogen attenuation 

(Retallick & Miera 2007), normal variation in density-dependent host pathogen 

dynamics (Briggs et al. 2010), and environmental conditions (Forrest & 

Schlaepfer 2011, Murphy et al. 2009, Puschendorf et al. 2011).  

 Bd occurs in several populations of boreal chorus frogs, Pseudacris 

maculata, in Arizona (Hyman & Collins 2012) with adults suffering up to 80% 

mortality as a result of Bd infection (Retallick & Miera 2007). Yet, populations of 

chorus frogs may persist with Bd for several years at high host and pathogen 

densities (Collins & Miera 2005, O. Hyman, unpubl. data). This study provides a 
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detailed description of the seasonal dynamics of Bd during chorus frog breeding 

and development and combines these data with laboratory experiments and a 

mathematical model to test two hypotheses for the mechanisms underlying the 

ability of chorus frog populations to persist with Bd; host tolerance and 

environmental rescue.  

Explanation of Hypotheses 

 Host tolerance. The simplest explanation for chorus frog population 

persistence is that despite harboring high intensity Bd infections (Hyman & 

Collins 2012), chorus frogs do not contract the disease chytridiomycosis. If 

chorus frogs can tolerate Bd infections without increased mortality or fitness 

related costs, the population could persist with Bd. To test this hypothesis, we 

compared rates of mortality in naturally Bd-infected and uninfected frogs 

collected from a wild population and held under laboratory conditions ideal for 

the pathogen. If chorus frogs do not contract chytridiomycosis, then individuals 

with natural Bd infections should incur similar rates of mortality as those without 

Bd infections. 

 Environmental rescue. If chorus frogs are not Bd tolerant, then 

environmental factors, such as temperature, may play a role in their ability to 

persist with Bd. For example, in culture, Bd will not grow at ≥ 28 °C and is killed 

at ≥ 30 °C (Piotrowski et al. 2004). High temperatures ranging from 26-37 °C also 

remove Bd infections from animals in captivity (Geiger et al. 2011, Retallick & 

Miera 2007, Woodhams et al. 2003) and potentially in the wild (Forrest & 

Schlaepfer 2011, Puschendorf et al. 2011).  
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 Chorus frogs use mostly ephemeral bodies of water for breeding. These 

ponds warm and dry as frogs develop. The warm temperatures reached in these 

ponds could potentially eliminate Bd infections from larvae and newly 

metamorphosed froglets (Fig. 1). For example, Geiger et al. (2011) found that 

seven of eight midwife toad larvae lost Bd infections when held at 26 °C for five 

days. This environmentally induced reduction in Bd prevalence may “rescue” 

chorus frog populations from Bd-related decline by clearing the juvenile cohort of 

infections each year, thereby increasing survivorship to adulthood. If larvae and 

newly metamorphosing froglets are losing Bd infections as ponds warm, then (1) 

heat-treated tadpoles should lose Bd infections, (2) Bd prevalence should be 

reduced in larvae and newly metamorphosed froglets, and (3) warmer, ephemeral 

ponds should have lower Bd prevalence in these life stages in comparison to 

cooler, perennial ponds (Fig. 1). These predictions were tested using field studies 

and laboratory experiments.   

 In addition a matrix-based model of a chorus frog population was 

constructed to examine how relative rates of adult and juvenile survival influence 

projected chorus frog population growth under varying levels of stage-specific 

survival. The purpose of this model was to explore the relative importance of 

juvenile versus adult survival for chorus frog population growth in the context of 

the tolerance and environmental rescue hypotheses.  
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METHODS 

Mathematical Model 

 Chorus frog life cycle. Chorus frogs are annual breeders. Adults breed for 

several weeks following snowmelt in late February to early April. Individual 

females can lay between 500-1500 eggs (Moriarity & Lannoo 2005) with an 

estimated hatching success of 37-87% (Kramer 1978). Once hatched, tadpoles 

develop over ~2.5-month period with estimates of survival to metamorphosis 

ranging from 10-100% in natural habitats (Smith 1983). Following breeding and 

metamorphosis, adults and young-of-the-year froglets (metas) forage in 

surrounding woodlands and overwinter under leaves, rocks, and logs beneath the 

snow (Moriarity & Lannoo 2005). Metas typically mature within one year with an 

estimated 19% survival from metamorphosis to maturity (Smith 1987). Longevity 

of this species is not known, but closely related species (P. nigrita) live for one-

three years (Caldwell 1987).  Smith (1987) estimated 14% annual adult survival 

following breeding in Michigan populations.  

 Model construction. Based on the available knowledge of the chorus frog 

life cycle we constructed a simple population model to explore the relationships 

between fecundity, stage-specific survival, and projected population growth rate. 

The model presented herein is the simplest time-based matrix population model 

that separates the adult stages from the juvenile (meta) stages and accounts for 

differences in the survival and fecundity of each of these stages.  Ponds in 

Arizona, including those used in this study, are typically ≥1 km apart, well 
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beyond the 200 m maximum dispersal distance of chorus frogs (Kramer 1973). 

Thus, immigration and emigration are not included in the model as these factors 

are likely to make negligible contributions to individual populations in a typical 

breeding cycle.  

 In the model, individual female adults (≥ 1 yr old) and metamorphosed 

juveniles (metas; < 1 yr old) are counted in the summer of each year (t+n) 

following breeding and metamorphosis.  A schematic representation of the model 

is shown in Fig. 2. The adult (An)  meta (Mn) transition describes the 

production and survival of eggs, larvae, and tadpoles to metamorphosis during the 

~2.5 mo of development from egg to meta.  This model assumes that these are 

constant rates encapsulated by the parameter γ.  The Mn  An transition describes 

meta survival to maturity, σ. The An  An transition describes adult survival 

(following breeding) to breeding in the following year, Σ.  Both Σ and σ are 

assumed to be constant proportions that encapsulate natural and Bd related 

mortality defined as: 

 

Σ = Ψ(1-I*D)      (1) 

σ = Ω(1-i*d)     (2) 

 

 where Ψ and Ω represent the fraction of adults and metas, respectively, that 

typically survive to breed the following year in the absence of Bd, I and i 

represent the fraction of adults and metas that become infected each year, and D 

and d represent the fraction of infected animals that die from Bd infections. 
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Following the results from of my field surveys and laboratory experiments 

(discussed below), the model assumes that annual adult mortality occurs 

following breeding and meta mortality follows metamorphosis in each time step.  

 The dynamics of this system can be formulated as a system of two first-

order, linear difference equations: 

 

At+1  = ΣAt+ σMt    (3) 

Mt+1 =  γAt+1      (4) 

              =  γΣAt+ γσMt 

 

where t is measured in years, Σ and σ are annual survivorship of adults and metas 

as decribed above, and γ is the number of female metas produced per an adult 

female each year.  These equations can take the general form: 

 

Nt+1 = MNt     (5) 

 

where 

 

Mn = Σ 𝜎
𝛾Σ 𝛾𝜎   and  Nt = 𝐴𝑀 t   (6) 

 

This 2 x 2 matrix (6) can be converted to the general quadratic characteristic 

equation where λ represents the eigenvalues of the matrix (M): 
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λ2 – βλ + δ = 0     (7) 

 

where 

β = Σ + γσ 

δ = Σγσ – Σγσ = 0 

 

The dominant eigenvalue λ of this matrix is equal to er, where r is the intrinsic 

rate of increase of the population in the equation  

 

Nt = N0ert 

 

Thus, if λ = er = 1, then r = 0, and the population size remains stable, if λ  > 1 the 

population grows, and λ  < 1 the population shrinks to zero. Solving for λ in (7) 

we obtain the following non-trivial solution: 

 

λ  = Σ + γσ     (8) 

 

Thus, the chorus frog population will grow or remain stable when: 

 

γσ ≥ 1 – Σ     (9) 

 

 

 



  88 

By substituting (1) and (2) into (9) we find the population grows when: 

 

γ[Ω(1-i*d)] > 1 - Ψ(1-I*D)     (10) 

     

 Equations (9) and (10) were used to examine the lower limits of annual 

adult and juvenile survivorship that the population can tolerate and still maintain 

positive or neutral projected population growth (λ ≥ 1). In addition, equation (10) 

was used to examine how λ responds to incremental, proportional (1%) changes 

to individual survival-related parameters while all others were held constant 

(Caswell 1989). Parameter values from the literature and results from this study 

were used in this analysis (Table 1). The lowest estimates of survival and 

fecundity were chosen from the literature to ensure estimates of frog population 

growth were conservative. The highest rates of infection in adults (100% 

following breeding; see 2011 field results below) and emerging metas (85%; see 

2011 field results below) were used as default values to err on the conservative 

side of lower population growth. The model assumes that the fraction of adult 

mortality from Bd infections (D) found in the laboratory-based 

tolerance/resistance experiment (85%) is indicative of survival in the field. The 

model also assumed 85% Bd-induced mortality in metas (d) as found by Searle et 

al. (2011). Female fecundity (γ) was estimated using the following equation: 

 

γ = δθη*0.5     (11) 
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where δ is the number of eggs produce per female, θ is egg hatching success, η is 

larval survival to metamorphosis, and 0.5 represents the fraction of females in 

each cohort assuming a 1:1 sex ratio.  

Tolerance Experiment 

 On March 5, 2011, 40 adult boreal chorus frogs were collected from a 

single pond, Salmon Lake, located in Coconino National Forest, Coconino 

county, Arizona (Fig. 3; see Table S1 for GPS coordinates). Bd was detected in 

chorus frogs in this pond at 16% and 88% prevalence during spring breeding in 

2009 and 2010 (O. Hyman, unpubl. data), respectively, indicating that this 

population has been exposed to Bd for at least two generations. I collected frogs 

from this pond and placed them individually into pre-labeled, 177-ml 

polypropylene containers with lids (Biologix no. 51-17720) along with an 

autoclaved rock and 50 ml of 20% Holfreter’s solution. Each frog was handled 

wearing vinyl gloves that were changed between animals to prevent cross 

contamination. Animals were transported to the laboratory and kept on a 12-hr 

light cycle (0700-1900) at 23 °C.  Animals were randomly arranged on a single 

shelf to control for any spatial effects.  All animals were fed three crickets 

biweekly and had water changed daily and containers changed weekly until 

sphagnum moss was added on May 4, 2011 (see below). Two additional 

laboratory-reared adult chorus frogs that previously tested Bd negative by 

quantitative PCR (qPCR) were placed in identical containers and interspersed 

among treatment animals to act as negative controls against contamination during 

water changes, ensuring that any detection of Bd infections in field caught 
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animals was a result of previous Bd exposure in the field, not infection in the lab. 

All animals were swabbed for Bd on the date of death, and all live animals were 

swabbed on April 1, October 4, 2011 and March 5, 2012 following Retallick and 

Miera (2007) to confirm and reconfirm disease status. Containers were checked 

daily for dead animals. Presence of skin sloughs (indicative of Bd infection) and 

whether the animal was in or out of the water in each container was also recorded 

until May 4, 2011. On this date, sphagnum moss was added to each container to 

simulate the transition from aquatic to terrestrial habitats that chorus frogs make 

following the end of breeding.  Dead animals were swabbed and preserved in 70% 

ethanol. All swabs were extracted in Prepman UltraTM following Retallick and 

Miera (2007) and examined for the presence of Bd DNA by qPCR (Boyle et al 

2004) using internal positive controls and bovine serum albumin to test for and 

reduce PCR inhibition following Hyman & Collins (2012).  

 Differences in mortality among groups were tested using Kaplan-Meier 

survival analysis.  Skin sloughing and water avoidance were non-normally 

distributed (Shapiro-Wilk W test, p <0.01) and therefore these data were 

compared for infected and uninfected animals using non-parametric Wilcoxon 

signed-rank tests, with all animals dying previous to May 4, 2011 dropped from 

analyses to eliminate biases created by animals that did not survive for the entire 

time period in water. A Wilcoxon signed-rank test was also used to compare the 

initial loads (on April 1, 2011) of frogs that survived with Bd infections to those 

that died.  
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Environmental Rescue 

 Laboratory heating experiment. This experiment’s goal was to test if 

naturally occurring water temperatures are sufficiently warm to remove Bd 

infections from chorus frog tadpoles during development. Fifty-two chorus frog 

tadpoles were collected on April 17, 2011 from 27 Mile Lake in Coconino 

National Forest, Coconino county, Arizona (Fig. 3; see Table S1 for GPS 

coordinates). Tadpoles were held in one large tank filled with aged tap water kept 

at 17 °C on a 13:11 light cycle (0630-1930) and fed Wardly® Premium Algae 

Discs™ (Hartz Mountain Corp. Item #416) weekly until June 21, 2011, when 

they were staged (Gosner 1960) and placed individually into, 177-ml 

polypropylene containers (Biologix no. 51-17720) filled with 75 ml of 20% 

Holtfreter’s solution. Forty-eight tadpoles were individually inoculated with 

~1,000 zoospore*ml-1 of a Bd strain isolated from 27 Mile Lake (Retallick & 

Miera 2007).  Zoospores were counted three times on a haemocytometer and 1 ml 

of pure culture was added to each container using a Rainin 1000-µL micropipette 

to ensure that each container received similar zoospore doses. High doses were 

used to ensure animals became infected. In addition, a single, fiber-tipped DNA 

swab (Fisher no. 14-959-79) was submerged in the bottom of the containers of 

four randomly selected hot and cold treated animals (eight total swabs) on the day 

of inoculation. These swabs acted as “remnant DNA controls” to help ensure that 

any Bd DNA detected at the end of the experiment was from true Bd infections, 

as opposed to remnant DNA (Dejean et al. 2011) on the surface of objects 
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transferred during water/container changes from either initial Bd inoculations or 

tadpole produced zoospores.  The remaining four tadpoles were sham inoculated 

with Bd-free culture medium to act as negative controls against cross 

contamination. Following inoculations, all containers were placed on a single 

shelf in an environmental chamber kept at 20 °C on a 13:11 light cycle (0630-

1930) for one week to allow Bd infections to develop. 

 Tadpoles and controls were then individually transferred into autoclaved, 

177-ml containers with 170 ml of 20% Holtfreter’s solution, sorted by Gosner 

stage, and randomly assigned (within each Gosner stage) to one of two treatments, 

hot or cold. Cold treatments were kept at 20 °C from 0630-1930 and 17 °C from 

1930-0630 to replicate diel cycles typical of these ponds.  Hot treatments 

followed the temperature cycles of cool treatments, with the exception that during 

the hottest part of the day (1200 – 1600) they were warmed to 29 °C to replicate 

natural “warm” water temperatures. Twelve individual Bd-exposed tadpole 

containers were placed into each of four separate, time-heated, water baths (48 

total animals). In addition, one negative control tadpole was added to each water 

bath (four total controls).  Water baths were then placed in an environmental 

chamber kept at 17 °C on a 13:11 light cycle (0630-1930). The placement of hot 

and cold water-baths within the chamber was alternated following a Latin-square 

design to neutralize spatial effects on disease outcome. Thermistors in individual 

containers recorded water temperatures at 0800, 1500, and 1900 hours within ± 

0.5 °C of the desired range for each treatment for the first three and last three days 

of the experiment, confirming that water temperatures remained consistent 
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throughout the course of the experiment. All tadpoles and controls were 

transferred to new, autoclaved containers and fed 2 mg of ground Wardly® 

Premium Algae Discs™ weekly following sterile protocols to prevent 

contamination.  

 On July 4, 2011 (2 wk post-inoculation), following the second water 

change, eight exposed and one sham-exposed tadpole from each treatment (18 

total) were euthanized in MS-222 and tested for the presence of Bd by extracting 

their mouthparts (Retallick et al. 2006) to ensure Bd inoculations and sham 

inoculations were successful.  One DNA remnant control swab was also removed 

from each treatment and extracted as described above. The remaining tadpoles 

were fed and changed weekly until reaching Gosner stage 42, at which time they 

were individually transferred to a tilted plastic shoebox filled with enough 20% 

Holtfreter’s solution to submerge half of the container. DNA remnant control 

swabs were transferred to individual shoeboxes on the same date as the animal 

with which they shared a 177-ml container. Once tadpoles reached Gosner stage 

46, they were euthanized in MS-222, placed into individual vials with 70% 

ethanol, and stored at -20 °C. Any animals that died prior to reaching stage 46 

were dipped in MS-222 and stored as above.  DNA remnant control swabs were 

stored on the day their matching frog died following the same process. On August 

4, 2011 one foot and one hand was removed from each preserved froglet and 

extracted following the mouthpart extraction protocol described in Retallick et al. 

(2006).  DNA remnant controls were extracted as described in Hyman and Collins 

(2012). Presence of Bd DNA was determined by qPCR as described above. This 
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method was chosen because it is the most sensitive technique available (Hyatt et 

al. 2007).  

 Chi-squared tests were used to compare the number of froglets testing Bd 

positive at the end of the experiment and the number of animals to reach stage 46 

between hot and cold treatments. Wilcoxon signed-rank tests were used to 

compare mean Gosner stage between hot and cold treatments at the start of the 

experiment and the number of days animals in each treatment took to reach 

Gosner stage 42. Wilcoxon signed-rank tests were used to compare Bd loads of 

tadpoles euthanized 2 wk post initial Bd exposure between treatments.  

 Field observations 2010. If warmer water temperatures remove Bd 

infections from tadpoles and newly metamorphosed froglets, Bd prevalence 

should be reduced in young-of-the-year froglets.  This prediction was tested by 

comparing Bd prevalence in breeding adults to that of newly metamorphosed 

froglets from the same ponds.  In 2010, ~30 adult chorus frogs were swabbed for 

Bd from each of 15 ponds during breeding. Details of sampling are described in 

Hyman & Collins (2012). All ponds were located in ponderosa pine dominated 

habitat in Coconino National Forest (Fig. 10; see Table S1 for GPS coordinates) 

Each of these ponds was revisited one to two months later in mid-late June to 

sample ~30 newly emerging metamorphs for Bd infections following Garner et al. 

(2009). Bd prevalence was compared between adults and young-of-the-year 

within ponds using a paired t-test.  

  Field observations 2011. If high water temperatures are removing Bd 

infections from larvae and newly metamorphosing froglets, then cooler/deeper 
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ponds should have higher Bd prevalence in tadpoles and newly metamorphosed 

froglets than warmer/shallower ponds (Fig. 1). This prediction was tested by 

comparing water temperatures and seasonal Bd dynamics in two ponds: a 

relatively deep, perennial pond (27 Mile Lake) and a shallow, ephemeral pond 

(Twin Pond). Both ponds were located in Coconino National Forest (Fig 3; Table 

S1) and surrounded by a similar habitat of mostly ponderosa pine and oak 

dominated forest (Brown, 1994). The shallow, ephemeral pond (Twin Pond) was 

located at an elevation of 2,178 m and was completely dry by the last sampling 

date. Bd has been detected annually in breeding chorus frogs from this pond since 

2009 with infection prevalence in adults ranging from 12-15% during breeding 

(O. Hyman unpubl. data). The deeper, perennial pond (27 Mile Lake) was located 

at 2,119 m and had a maximum depth of 1.69 m at the last sampling date. Bd was 

first detected in chorus frogs in this pond in 2001 (Retallick & Miera 2007) and 

was detected at 71, 66, and 77% prevalence in adult frogs during breeding in 

2008, 2009, and 2010 respectively (O. Hyman unpubl. data). Chorus frog 

populations have persisted at high host densities at both of these sites, despite 

high Bd prevalence for several generations (O. Hyman, unpubl. data).  

 Each pond was visited weekly from the start to the end of adult breeding, 

three times during larval development, and three times during the emergence of 

young-of-the-year froglets. During each of these visits (with the exception of 

times larvae were sampled) up to 33 adult frogs/froglets were swabbed for Bd as 

described in Hyman & Collins (2012). All adult frogs and froglets were collected 

from within the perimeter of the pond and between 1900 and 2400 hrs to control 
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for diel effects. Newly metamorphosed froglets were not present at the shallow, 

ephemeral pond on the final visit, as they had already dispersed to the surrounding 

forest. When water was present, ~600 ml of pond water was filtered at each visit 

to test for Bd in the water column using the methods described in Hyman & 

Collins (2012). One hundred fifty larvae were sampled on each of the three visits 

during larval development. Five larvae were captured in hand-nets from each of 

30 haphazardly selected locations within a pond (150 total larvae).  These 

locations were stratified across pond microhabitats to include shallow, deep, open, 

shaded, rocky, and vegetated areas. Different nets were used at each within-pond 

location, to limit potential disease transfer. Once captured, larvae were euthanized 

in individual vials containing MS-222, transferred to new individual vials 

containing 70% ethanol, and placed on ice until they were stored in the lab at -20 

°C. Bd infection status of individual larvae was determined by extracting DNA 

from excised mouthparts following Retallick et al. (2006), including positive and 

negative controls. Samples were analyzed in duplicate by qPCR as described 

above.  

 In addition to disease data, the presence of each life stage (adults, larvae, 

juveniles) within ponds was assessed during each visit. Adult presence was 

determined by calling. Initial presence of larvae was determined after the first egg 

mass was detected by dip-netting 50 times in the areas of highest egg densities. 

Later in the season, larval presence was easily determined by visual surveys. 

Presence/absence of young-of-the-year froglets was determined by time-limited, 

1-hr visual surveys around pond edges. These surveys were used to determine the 
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relative amount of overlap between each life stage, which could be important for 

disease transmission across life stages, especially adults to larvae. 

 Pond water temperature was measured daily at 2-hr intervals using 

iButton™ temperature loggers (1-Wire Thermochron™) sealed in Plasti-dip™ 

and placed on pond bottoms at a depth of 1 m. Temperature loggers were moved 

on each visit to maintain them at this depth as ponds evaporated and shrank. The 

shallow, ephemeral pond was < 1 m deep on the second date of larval sampling 

(May 5, 2011), so the temperature logger was left at the deepest point (0.89 m).  

Both temperature loggers were removed from ponds on June 24, 2011 when the 

ephemeral pond was completely dry. We compared the total number of days 

water temperatures exceeded 26 °C (removes Bd infections from Alytes larvae), 

28 °C (no Bd growth in vitro), and 30 °C (Bd death in vitro) in each pond.  Mean 

daily maximum water temperatures during tadpole development (April 1– June 1, 

2011) were compared between ponds using t-tests.  

 

RESULTS 

Frog Population Model  

 In biological terms, equation (9) states that the frog population is projected 

to grow when the per capita number of offspring that survive to maturity each 

year (γσ) exceeds the fraction of adults that die each year (1-Σ). Thus, even in 

situations where there is no adult survivorship (Σ = 0), as long as each breeding 

adult produces ≥ 1 female frog that survives to maturity in the subsequent 

generation (γσ ≥ 1), the population will grow. Though this is likely to be an 
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overstatement of the robustness of chorus frog populations to adult mortality, it 

theoretically supports the hypothesis that chorus frog populations can persist even 

with 100% annual adult mortality, assuming that a sufficient number of juveniles 

survive to reproduction in the following year (i.e. γσ ≥ 1). The reverse, however, 

is not true. The population cannot grow or persist if there is no meta survivorship 

(σ = 0). 

 Annual meta survivorship, also had a strong influence on projected 

population growth (λ) relative to adult survivorship (Fig. 4; Table 2). 

Incrementally increasing individual parameters by a fixed proportion (1%) while 

holding all others constant revealed that λ is most strongly influenced by 

parameters related to meta survivorship and least strongly by those related adult 

survivorship and fecundity (Fig. 4; Table 2). This response, however, is 

modulated by fecundity. Higher levels of fecundity (γ) result in increased 

responses of λ to meta survival parameters (Fig. 5).  Thus, at higher fecundities, 

which are typical for chorus frogs (Moriarity & Lannoo 2005), projected 

population growth is most sensitive to meta survival. At lower fecundities, 

however, meta survival becomes less important relative to adult survival for 

population growth.    

Tolerance Experiments  

 Of the 40 animals collected, 27 tested Bd positive and 13 tested Bd 

negative on the first sampling date following collection (April 1, 2011). All Bd-

negative animals and the negative controls remained Bd negative at the middle 

and last pathogen sampling dates on October 4, 2011 and March 5, 2012, 
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respectively, indicating no cross contamination or development of infections 

during the course of the experiment. All Bd-positive animals tested Bd positive on 

the date of death. Three of the four Bd-positive animals that did not die during the 

course of the experiment tested Bd positive on the last day of sampling on March 

5, 2012. One Bd-positive animal lost its Bd infection by October 4, 2011.  

 Bd-positive animals suffered significantly greater mortality (X2 
1

 = 22.1, p 

< 0.0001) with 85% (23 of 27) of the Bd-positive animals dying and no death in 

Bd-negative animals (Fig. 6).   Median time to death was 53 days, with the 

earliest death occurring 17 days after collection and the last death occurring after 

218 days (Fig. 6). The four surviving Bd-positive frogs have lived at least 366 

days (> 1 yr) with infections. Bd-infected frogs sloughed skin and avoided water 

significantly more often than uninfected individuals (Mann Whitneydf=1, p < 0.001 

and < 0.0001, respectively). Bd-positive animals had a median load of  ~12,000 

zoospore genomic equivalents (GE; limits: 16-221,600 zoospore GE) at the time 

of death. Surviving infected frogs (n=4) had a median load of 266 zoospore GE 

(limits: 23 – 4,600 zoospore GE) on April 1, 2011, 678 zoospore GE (limits: 0 – 

2,352 zoospore GE) on October 4, 2011 and 284 zoospore GE (limits: 0-3,520 

zoospore GE) on March 5, 2012.  Animals that survived to the end of the 

experiment with infections had significantly lower Bd loads at the start of the 

experiment (April 1, 2011) than those that died (Wilcoxondf=1, p = 0.006; Fig. 7).   

Laboratory Heating Experiment 

 Significantly fewer heat-treated animals tested Bd positive compared to 

cold-treated animals (X2 
1

 = 12.5, p = 0.0004). In fact, 0 of 16 heat-treated animals 
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tested Bd positive, in contrast to 9 of 16 (56%) cold-treated animals (Fig. 8). All 

hot- and cold-treated animals, except one heat-treated tadpole, tested Bd positive 

two weeks post exposure, but cold-treated tadpoles had significantly higher Bd 

loads than heat-treated tadpoles after only one week in the treatments 

(Wilcoxondf=1, p = 0.003. Fig. 9). Gosner stage (mean ±SE) was not significantly 

different between heat- (33.2 ± 0.5) and cold- (34.2 ± 0.5) treated animals at the 

start of the experiment (Wilcoxondf = 1, p = 0.50). Heat-treated tadpoles reached 

stage 42 significantly faster than cold-treated animals (Wilcoxondf = 1, p = 0.001), 

with a mean difference of approximately seven days. There was no significant 

difference in mortality between hot- and cold- treatments (X2 
1

 = 1.19, p = 0.28), 

with three cold- and one heat-treated animal dying before reaching stage 46. All 

negative control animals and DNA-remnant controls tested Bd negative.  

Field Observations 2010   

 A minimum of 24 adults and 28 newly metamorphosed froglets were 

sampled from each pond (Fig. 10; Table S7). Bd was detected in chorus frog 

adults from 13 of 15 ponds sampled, with Bd prevalence ranging from 0-100% 

(mean 43 ± 8%; Fig. 10; Table S7). Bd prevalence was significantly lower in 

young-of-the-year froglets (paired t-testdf = 14 , p = 0.0001) with Bd detected in 

only four of 15 ponds and prevalence ranging from 0-10% (mean 2 ± 0.8%; Fig. 

10; Table S7).  

Field Observations 2011  

 Water temperature. Mean daily maximum water temperatures during 

larval development were not significantly different in the ephemeral versus 
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perennial pond (t-testdf=116 , p = 0.84), with  a mean (± SE) of 22.5 ± 0.7 °C and 

22.7 ± 0.6 °C, respectively. However in the ephemeral pond maximum daily 

water temperatures at 1-m depth exceeded 26 °C on 19 days, 28 °C (no Bd growth 

in vitro) on seven days, and 30 °C (Bd death in vitro) on two days during larval 

development, while the deeper perennial pond exceeded these temperatures on 13, 

four, and zero days, respectively (Fig. 11d; Table S8).  

 Bd dynamics. During breeding, Bd prevalence generally increased in both 

ponds, reaching 100% for the final three weeks of calling. In the cooler perennial 

pond, Bd prevalence was initially high (~55%), dropped to  ~20% prevalence, 

then increased to a steady 100% prevalence for the final three weeks of adult 

sampling.  In the warmer ephemeral pond, Bd prevalence during breeding was 

initially low (~0-10%) then followed a similar pattern as the perennial pond, with 

prevalence quickly climbing to 100% during the final three weeks of breeding 

(Fig. 11a).  

 Following breeding, Bd prevalence slowly increased in larvae as they 

developed in the perennial pond. However, in the ephemeral pond Bd was not 

detected in any larvae throughout development (Fig. 11a). Bd prevalence in newly 

metamorphosed froglets followed a similar pattern, with slowly increasing 

prevalence from June 1 to July 18 at the perennial pond, and no Bd detected in 

newly metamorphosed froglets from the ephemeral pond on either of the sampling 

dates on June 1 or 24th (Fig. 11a).  

 Bd loads mirrored patterns of prevalence, peaking at the end of breeding 

with a mean of ~19,400 (max: 116,000) and 11,700 (max: 37,600) zoospore GE 
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in the perennial and ephemeral pond, respectively (Fig. 11b).  In the perennial 

pond, mean Bd load steadily rose from 0 to 1,554 to 2,506 zoospore GE in larvae, 

while mean load in young-of-the-year froglets initially increased from 13 to 512 

zoospore GE then decreased to 162 zoospore GE, despite the rise in Bd 

prevalence (Fig. 11b). Loads were zero for all larvae and froglets collected from 

the ephemeral pond (Fig. 11b).  

 Bd densities in the water column followed a similar pattern, peaking near 

the end of breeding, with densities as high as 244 zoospore GE l-1 and 121 

zoospore GE l-1 in the perennial and ephemeral pond, respectively (Fig. 11c). 

Water filters consistently detected Bd DNA in the perennial pond at each 

sampling point throughout larval development, including times when larvae did 

not test Bd positive (Fig. 11c). Conversely, water filters never detected Bd DNA 

after the end of breeding in the ephemeral pond (Fig. 11c).  

 Adult and larval chorus frog life stages showed similar degrees of overlap 

in the perennial and ephemeral pond, with a minimum of three and four weeks of 

overlap, respectively, demonstrating that larvae were present in both ponds at 

times of high Bd prevalence, loads, and aquatic zoospore densities (Fig. 11a).  In 

the perennial pond, larvae and newly metamorphosed froglets overlapped for at 

least two weeks, while there was only one day of detected overlap between these 

stages in the ephemeral pond (Fig. 11a). This single day of “detected” overlap in 

the ephemeral pond is almost certainly an underestimate, because the ephemeral 

pond had dried completely before the next sampling period, precluding the 

detection of larvae.  
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DISCUSSION 

 My model presents evidence that projected chorus frog population growth 

is most sensitive to changes in parameters associated with juvenile survival.  

Other matrix-based models of frog populations have found similar results. For 

example, Govindarajulu et al. (2005) found that bullfrog population growth rate is 

most affected by early post-metamorphic survival rates and recommended culling 

of young-of-the-year bullfrogs as the most effective way to reduce population 

growth. The model also predicts that chorus frog populations could theoretically 

persist with 100% annual adult mortality, but not 100% annual mortality of metas. 

These findings suggest that factors enhancing the survival of young-of-the-year 

chorus frogs will increase the likelihood of chorus frog population persistence, 

even in the face of high levels of annual adult mortality.  

 Adult boreal chorus frogs brought into the laboratory with natural Bd 

infections incurred high rates of mortality (85%). These results parallel previous 

reports of up to 80% mortality in artificially infected boreal chorus frogs collected 

from an adjacent site (Retallick & Miera 2007). It is clear that under conditions 

ideal for the pathogen, most adult chorus frogs in this population are susceptible 

to chytridiomycosis. This is in contrast to a similar study, which found no Bd-

related mortality in closely related Pseudacris regilla collected from populations 

that have persisted with Bd for six years in California (Reeder et al. 2012). The 

high level of Bd-related mortality in infected adults does not support the 

hypothesis that innate or adaptive means of Bd resistance or tolerance are a 

ubiquitous trait in chorus frogs that is responsible for their persistence with Bd.  
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 Assuming that Bd causes similar rates of mortality in the field, it is 

surprising that such a high proportion of susceptible individuals would survive in 

a host population several generations post-Bd introduction. This suggests that 

either host resistance/tolerance is not a heritable trait or that some extrinsic factor, 

unrelated to host resistance/tolerance is enabling these populations to persist with 

high numbers of susceptible host phenotypes.   

 My results suggest a combination of chorus frog life history traits and 

environmental conditions enable populations of chytridiomycosis-susceptible 

frogs to persist with Bd. In my laboratory study, median time to death was 53 

days, with the earliest death occurring 17 days after collection and the last death 

occurring after 218 days. Retallick & Miera (2007) found similar trends, with all 

frogs dying between 19 and 70 days post-exposure.  Assuming frogs suffer 

mortality at a similar rate in the wild, even the most susceptible individual has at 

least 2.4 weeks post-initial Bd exposure to survive and reproduce. Most frogs 

enter ponds Bd free at the time of breeding. If susceptible frogs breed before 

suffering mortality from chytridiomycosis this would negate selection for more 

resistant or tolerant individuals, enabling susceptible phenotypes to be retained in 

the population. This only works, however, if subsequent offspring are either not 

exposed to Bd, display different levels of resistance or tolerance than parents, or 

are exposed to Bd under conditions that are not favorable to the pathogen, hence 

allowing susceptible offspring to reach maturity.  

 My results indicate that environmental conditions in the field reduce Bd 

prevalence in offspring. Bd prevalence was significantly reduced in young-of-the-
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year froglets emerging from ponds in 2010, with Bd detected in only four of 

fifteen ponds sampled during this life stage. The absence of detectable Bd 

infections in larvae and froglets in the ephemeral pond sampled in 2011 indicates 

that Bd can be entirely removed from the larval cohort following breeding. 

Similar dynamics may underlie the absence of Bd infection in froglets observed in 

eleven other ponds in 2010 (Fig. 9).  

 Heat treatment experiments and field studies support the hypothesis that 

high water temperatures are responsible for the absence of Bd infections in larvae 

and froglets collected from these ponds.  Heat-treated larvae lost detectable Bd 

infections following metamorphosis.  Although the high-temperature regime used 

in this experiment may have exposed tadpoles to 29 °C at a higher frequency than 

these temperatures were recorded in the field, the absolute temperatures were 

within the range experienced in nature. This demonstrates that temperatures 

within the range of those occurring in nature can remove Bd infections during 

larval development. This inference is further supported by the absence of Bd 

infection from a heat-treated tadpole only two weeks post-inoculation.  

 Bd infections were not detected in larvae or recently metamorphosed 

froglets collected from the shallower, ephemeral pond. This was in contrast to the 

deeper, perennial pond, in which Bd was detected from both of these life stages. 

Although mean temperatures of these ponds were not significantly different 

during larval development, water temperatures in the ephemeral pond exceeded 

critical temperatures that kill Bd or limit its growth more often than in the deeper 

perennial pond, where temperatures never exceeded 30 °C. I cannot conclude that 
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shallower sections (< 1 m) of the perennial pond did not exceed 30 °C, because 

the temperature logger was kept at a shallower depth (≤ 0.89 vs. ≤ 1 m) in the 

ephemeral pond during the times that it exceeded these critical temperatures. 

However, because the temperature logger was in the deepest part of the ephemeral 

pond, I can conclude that when water temperatures in this pond reached critical 

temperatures, there were no deeper areas of the pond that might provide thermal 

refuge for Bd, whereas these thermal refugia would have to be present in deeper 

sections of the perennial pond. This may explain why Bd persisted in the 

perennial pond and not the ephemeral pond despite relatively similar water 

temperatures.  

 The results of the heat treatment experiment and the absence of Bd 

infections in larvae and froglets collected from the ephemeral pond supports a role 

for temperature in reducing Bd infections in chorus frogs, but does not 

definitively demonstrate that the absence of Bd in the larval cohort is only due to 

high water temperatures. Other factors that may differ between the two ponds 

such as host densities, pond habitat structure, tadpole behavior, reduced 

abundance of reservoir hosts, or simple stochasticity in Bd transmission from 

adults to larvae could also explain this trend. Future studies should test these 

possibilities.   

 Previous studies of 20 Arizona chorus frog populations found that Bd was 

present in breeding adults at 17 sites in both 2009 and 2010 (O. Hyman unpubl 

data). The persistence of Bd at these sites means that Bd is either surviving in the 

environment, alternative hosts such as tiger salamanders (Ambystoma tigrinum), 
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or chorus frogs that survive through the winter with Bd infections. The three frogs 

that maintained chronic Bd infections for an entire year in the laboratory 

demonstrate that infected chorus frogs have the potential to survive long enough 

to maintain Bd in the population across breeding seasons, which would explain 

Bd’s re-occurrence each year. These chronically infected frogs had significantly 

lower initial levels of Bd infection than animals that died (Fig. 7) suggesting that 

the outcome of Bd infections may be dose dependent (Brunner et al. 2005, Carey 

et al. 2006) and that initial dose may subsequently affect the ability of Bd to 

persist across breeding seasons.   

 The inter-annual persistence of Bd in these populations also means that 

any chorus frogs surviving from the previous year are likely to be exposed (or re-

exposed) to Bd when they return to ponds each breeding season. Thus, the 

persistence of chorus frog populations with high frequencies of susceptible 

animals would also require that either a sufficient number of adults survive to the 

following breeding season to reproduce or their offspring reach sexual maturity 

within a year. Smith (1987) found that P. triseriata in Michigan reached sexual 

maturity within the first year following metamorphosis.  I hypothesize that early 

maturation in combination with the loss of infection during larval development 

may enable populations of susceptible amphibian hosts to persist with Bd without 

experiencing selection for more Bd resistant or tolerant phenotypes or marked 

population declines. This hypothesis is supported by my field and laboratory 

studies; however, more work is needed to confirm that higher temperatures 

increase meta survival. Future studies should employ mark-recapture techniques 
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to determine whether meta survival to maturity is enhanced by the loss of Bd 

infections.  

 In some cases Bd was not lost from the larval cohort. For example, Bd was 

detected in froglets from four ponds in 2010 and persisted in larval and juvenile 

froglets throughout development in the perennial pond (27 Mile Lake) in 2011. 

Assuming environmental removal of Bd infections from larval and juvenile life 

stages plays an important role in chorus frog population persistence, frog 

populations at these sites should decline. Yet animals at the perennial site (27 

Mile Lake) have persisted with Bd at high host and pathogen densities for at least 

nine years (Collins & Miera 2005, Hyman and Collins 2012). My model 

demonstrates that as long as the number of offspring surviving to maturity is 

sufficient to replace those adults that were lost, chorus frog populations can 

persist. Thus, even in situations where Bd causes high levels of mortality in 

young-of-the-year froglets, the population can grow. Alternatively, the persistence 

of Bd in the larval cohort may alter the selective pressure of Bd at these sites, 

potentially resulting in stronger selection for host resistance or tolerance or 

lowered pathogen virulence. In this scenario, we would predict a higher 

proportion of Bd-infected frogs collected from these perennial ponds to survive 

with Bd infections than those collected from ponds where Bd is completely lost 

from the larval cohort. Future studies should employ common garden experiments 

to determine whether chorus frogs display between-pond variation in their 

tolerance of local Bd strains (e.g. Tobler & Schmidt 2010).  
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CONCLUSIONS 

 Environmental context shapes the selective pressures that a pathogen 

exerts on its hosts and the evolutionary process in general (Thompson 1999). 

Geographic variation in evolutionary processes can result in very different 

outcomes of species interactions, including hosts and their pathogens (Thompson 

1999).  For example, Retallick & Miera (2007) demonstrated significant 

differences in the virulence of Bd strains isolated from chorus frog populations 

separated by only a few dozen kilometers. This study demonstrates that despite 

taking place in relatively similar habitats, the host-pathogen dynamics of chorus 

frogs and Bd can be very different at the pond-level.  These subtle environmental 

differences may alter the selective pressures that Bd exerts on local chorus frog 

populations potentially resulting in a geographic mosaic of host susceptibility and 

pathogen virulence at scales as small as individual ponds.  This idea is supported 

by previous results of Retallick & Miera (2007), and has important implications 

for the movement of Bd strains, even in areas where Bd is endemic.  For example, 

if there is pond-level variation in frog susceptibility to chytridiomycosis, 

individuals that do not develop chytridiomycosis at one site may not be resistant 

to or tolerant of Bd strains at another location where the selective regime is 

different (Retallick & Miera 2007).  

 I present evidence in support of the hypothesis that in some cases rapid 

host maturation can combine with environmental conditions unfavorable for the 

pathogen to enable host populations with high proportions of susceptible 

individuals to persist with this pathogen at high host and pathogen densities. 
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However, in other cases environmental factors do not remove Bd from the system, 

potentially resulting in a different selective regime that will alter the shape of this 

host-pathogen relationship. Future studies should examine whether these contexts 

influence the evolution of chorus frogs and Bd and the ability of chorus frog 

populations to persist with this pathogen.  
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Table 1. List and description of parameter values used in the model 

Parameter Value Description Source 

δ 500 number of eggs produced per female Moriarity & Lannoo 2005 

θ 0.38 egg hatching success Kramer 1978 

η 0.10 larval survival to metamorphosis Smith 1983 

γ 9.50 number of female metamorphs produced by an adult 
female δ*θ*η*0.5 

Ω 0.19 fraction of metamorphs that survive to the next breeding 
season in Bd free conditions  Smith 1987 

Ψ 0.14 fraction of adults that survive to the next breeding 
season in Bd free conditions Smith 1987 

i 0.85 fraction of metamorphs that emerge with Bd infections 
each year This study 

I 1.00 fraction of adults that become infected during breeding 
each year 

Hyman & Collins 2012 
This study 

d 0.85 fraction of infected metas that die from Bd infections Searle et al. 2011 

D 0.85 fraction of adults that die from Bd infections Retallick & Miera 2007 
This study 

Σ 0.021 fraction of adults that survive to the next breeding 
season in the presence of Bd Ψ(1-I*D)  

σ 0.053 fraction of metamorphs that survive to the next breeding 
season in the presence of Bd Ω(1-i*d) 
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Table 2. Relative response of projected population growth (λ) to 1% increases in 

each individual parameter while all other parameters were held constant.  λ shows 

a greater response, as assessed by slope, to changes in parameters associated with 

meta than adult survival 

Parameter Description Relative Response 
(Slope of line) 

γ number of female metamorphs produced by an adult female 
0.05 

Ω fraction of metamorphs that survive to the next breeding season in 
Bd free conditions  2.63 

Ψ fraction of adults that survive to the next breeding season in Bd free 
conditions 0.15 

i Fraction of metamorphs that emerge with Bd infections each year 
-1.53 

I Fraction of adults that become infected during breeding each year 
-0.13 

d Fraction of infected metas that die from Bd infections 
-1.53 

D Fraction of adults that die from Bd infections 
-0.13 
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Figure 1. Predicted change in Batrachochytrium dendrobatidis (Bd) prevalence 

over the course of boreal chorus frog (Pseudacris maculata) breeding and 

development in a perennial (solid line) versus ephemeral (dashed line) pond. Grey 

block represents life stage transitions from eggs to larvae to young-of-the-year 

froglets. Bd is maintained in larvae and froglets in the cooler perennial pond, but 

lost from the warmer ephemeral pond due to high water temperatures that Bd 

cannot tolerate   



  114 

 

Figure 2. Diagram of Pseudacris maculata lifecycle.  γ represents the number of 

metamorphs (M) produced by an adult (A) female each year. Σ and σ are survival 

of adults and metamorphs, respectively, to the next breeding season   
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Figure 3. Location of 3 ponds used in this study. Adult frogs used in tolerance 

experiments were collected from Salmon Lake. Tadpoles used in heat treatment 

experiments were collected from 27 Mile Lake. Twin pond was the ephemeral 

pond and 27 Mile Lake was the perennial pond in 2011 field surveys. GPS 

coordinates available in Table S1  
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Figure 4. Relative response of projected population growth (λ) to 1% increases in 

individual survival-related parameters while all other parameters were held 

constant.  Dotted lines represent parameters related to adult (A) survival. Solid 

lines represent parameters related to meta (M) survival. Colors code for 

equivalent parameters for each life stage. λ consistently shows a stronger response 

(depicted by steeper slopes) to changes in parameters associated with meta vs. 

adult survival. D and d are purposefully offset by 0.1 for ease of viewing 
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Figure 5. Diagram depicting the relationship of projected population growth (λ) to 

annual meta survivorship (σ) and fecundity (γ) when all other parameters are held 

constant (see Table 1 for values). At higher fecundities, populations maintain 

positive growth for a wide range of meta survivorship. When fecundity is low, 

meta survivorship becomes increasingly important to maintain positive population 

growth. At the lowest fecundities, however, even 100% meta survival cannot 

maintain positive population growth 
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Figure 6. Boreal chorus frogs (Pseudacris maculata) with naturally obtained 

Batrachochytrium dendrobatidis (Bd) infections suffered significantly greater 

mortality (85%) than Bd-free controls (0%; X2 
1

 = 22.1, p < 0.0001) 
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Figure 7. The four boreal chorus frogs (Pseudacris maculata) that survived with 

Batrachochytrium dendrobatidis (Bd) had significantly lower Bd loads at the start 

of the experiment than the 24 frogs that died (Wilcoxondf=1, p = 0.006) 
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Figure 8. Results of qPCR analyses of hand and foot samples taken from newly 

metamorphosed boreal chorus frogs (Pseudacris maculata) exposed to 

Batrachochytrium dendrobatidis (Bd) as larvae and allowed to develop in 

naturally relevant warm temperatures (hot) versus cooler (cold) temperatures. 

Animals developing in cooler temperatures were more likely to test Bd positive 

following metamorphosis (X2 
1

 = 12.5, p = 0.0004) 
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Figure 9. Comparison of mean Batrachochytrium dendrobatidis (Bd) loads (±1 

SE) on the mouthparts of boreal chorus frog (Pseudacris maculata) tadpoles two 

weeks after initial Bd exposure and one week after being kept at 20 °C (cold) or 

29 °C for four hours daily (hot). Loads were significantly lower in heat-treated 

animals (Wilcoxondf=1, p = 0.003). One heat-treated animal tested Bd-negative 
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Figure 10.  Batrachochytrium dendrobatidis (Bd) prevalence (± 95% confidence 

intervals) in adult versus young-of-the-year boreal chorus frogs (Pseudacris 

maculata) collected from each of 15 ponds on Arizona’s Mogollon Rim in 2010. 

Bd prevalence was significantly lower in newly emerging froglets (paired t-testdf = 

14 , p = 0.0001), with only four ponds having froglets test Bd positive. Numbers 

above bars represent samples size if < 30 
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Figure 11.  Comparison of (a) Batrachochytrium dendrobatidis (Bd) prevalence, 

(b) mean Bd loads (c) aquatic densities of Bd zoospores (zsp), and (d) water 

temperatures at 1 m depth in a perennial pond (1) versus an ephemeral pond (2) 

over an approximately four month period coinciding with the breeding and 

development of the boreal chorus frog (Pseudacris maculata).  Vertical dashed 

grey lines represent the transition to sampling of new life stages for Bd. Solid 

markers on lines represent sampling points. In (a) solid horizontal grey lines 

represent time periods of detection and overlap of each life stage within each 

pond. Numbers above points represent sample size, dotted lines represent 95% 
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confidence intervals for Bd prevalence, solid black lines represent Bd prevalence 

in adult frogs, red lines represent prevalence in larvae, and dashed black lines 

represent prevalence in young of the year. Horizontal grey lines in (d) represent 

temperatures relevant to Bd growth and survival. Water temperatures in shallow 

ponds exceeded 30°C (causes Bd death) during larval development and Bd was 

not detected in larvae, young-of-the-year, or water in this pond after breeding. GE 

= genomic equivalents
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Table S1. Name, location, and general description of ponds used in this study  

 

 

  

Pond Name Lat (N) 
NAD27 

Long (W) 
NAD27 

Description 

27 Mile 34 30.049' 111 27.877' perennial, natural depression 

Alder Lake 34 22.685' 110 57.886' ephemeral, natural depression 

Aspen Lake 34 17.832' 110 51.339' ephemeral, natural depression 

Baker Lake 34 27.263' 111 23.750' marsh, natural depression 

Bar D 34 40.788' 111 24.084' semi-perennial, man-made cattle tank 

Brolliar Park 34 50.788' 111 28.368' semi-perennial, man-made cattle tank 

Brolliar Wetlnd 34 51.322' 111 28.275' ephemeral, man-made depression 

Calloway Lake 34 30.832' 111 27.550' semi-perennial, man-made cattle tank 

Clints 34 35.331' 111 17.334' semi-perennial, man-made cattle tank 

Mahan Park 34 37.533' 111 22.062' semi-perennial, man-made cattle tank 

McClure Lake 34 35.416' 111 16.701' perennial, man-made cattle tank 

Mud 34 29.597' 111 34.923' semi-perennial, man-made cattle tank 

No Name 13 34 30.643' 111 19.020' semi-perennial, man-made cattle tank 

No Name 7 34 20.759' 110 58.494' ephemeral, natural depression 

Salmon Lake 34 30.624' 111 32.410' semi-perennial, man-made cattle tank 

T bar 2 (3rd) 34 43.841' 111 31.510' perennial, man-made cattle tank 

Tinny 34 50.337' 111 26.068' ephemeral, man-made cattle tank 

Twin Ponds 34 34.427' 111 16.150' ephemeral, natural depression 

Van Deren 34 50.137' 111 26.700' perennial, natural spring 

ZZ Tank 34 49.642' 111 26.306' semi-perennial, man-made cattle tank 
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Table S2.  Batrachochytrium dendrobatidis (Bd) prevalence and load data from 

swabs collected from boreal chorus frogs from 20 ponds in Arizona in 2009. GE = 

genome equivalents. N = sample size 

Pond 
       

N 
% Bd prevalence 

(Bayesian 95% central CI) mean Bd Load (GE) 
27 Mile        61 66 (52-76) 653 
Alder Lake        60 55 (42-67) 853 
Aspen Lake        60 93 (84-97) 1123 
Baker Lake        60 2 (<1-9) 18 
Bar D        54 24 (14-37) 660 
Brolliar Park Tank        60 13 (7-24) 1752 
Brolliar Wet Land        44 16 (8-29) 475 
Calloway Lake        60 10 (5-20) 108 
Clints        60 2 (<1-9) 8 
Mahan Park        60 25 (16-37) 2749 
McClure Lake        60 5 (2-14) 169 
Mud        47 2 (<1-11) 4 
No Name 13        30 0 (0-11) 0 
No Name 7        63 62 (50-73) 629 
Salmon Lake        61 16 (9-28) 337 
T bar 2        56 59 (48-72) 124 
Tinny         60 25 (16-37) 661 
Twin Ponds        60 15 (8-26) 496 
Van Deren        60 13 (7-24) 330 
ZZ tank        60 20 (12-32) 211 
Total        1136 27 (25-30) -- 
mean        56.80 27 568 
SD        7.89 26 675 
SEM        1.76 6 151 
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Table S4. Explanatory variables collected from individual ponds in 2009 and 

2010. TP = total phosphorus, TN = total nitrogen 

 

  

Tank TP 
(µg-P L-1) 

2009 

TP 
(µg-P L-1) 

2010 

TN  
(µg-N L-1) 

2009 

TN  
(µg-N L-1) 

2010 

Capture rate 
(animals min-1) 

2009 

Capture rate 
(animals min-1) 

2010 
27 Mile 60.9 62.34 730 350 0.15 0.28 

Alder 18.1 46.42 280 230 0.47 0.49 
Aspen 58.4 53.06 720 580 0.40 0.50 

Baker 75.9 162.30 490 510 0.15 0.22 
Bar D 142.2 68.82 930 760 0.12 0.37 

Brolliar Park 53.9 51.28 380 190 0.39 0.47 
Brolliar Wet 68.6 127.52 810 610 0.20 0.34 

Calloway 381.1 136.25 1150 1460 0.32 0.35 
Clints 100.8 55.72 830 30 0.25 0.26 

Mahan 143.0 129.44 890 130 0.15 0.27 

McClure 62.4 52.36 740 400 0.33 0.34 
Mud 203.3 82.44 630 340 0.08 0.15 

No Name 13 31.9 56.16 350 20 0.13 0.19 
No Name 7 60.7 74.42 350 160 0.20 0.32 

Salmon 126.1 117.08 840 510 0.31 0.22 
T bar 2 212.7 89.06 770 160 0.11 0.22 

Tinny 72.3 38.72 360 20 0.34 0.40 
Twin 104.7 56.08 860 260 0.31 0.41 

Van Deren 22.5 31.14 360 440 0.40 0.35 
ZZ 66.4 34.94 510 380 0.43 0.63 

mean 103.29 76.28 650 380 0.26 0.34 
SEM 18.9 8.5 60 70 0.03 0.03 
min 18.10 31.14 280 20 0.08 0.15 
max 381.07 162.30 1150 1460 0.47 0.63 
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Table S5. Fit of linear and quadratic responses of frog capture rates (n ≥ 30 per 

pond) to concentrations of total phosphorus (TP) and total nitrogen (TN) from 20 

ponds on Arizona’s Mogollon Rim in 2009 and 2010.  Quadratic responses were 

not fit to TN data due to their small range. Capture rate decreased significantly 

with increased TP indicating lower frog densities in high P ponds. No consistent 

trends were found for TN. Bold signifies statistically significant relationships (α = 

0.05). 

 
 
 
 
 

 
  

Response variable Explanatory 
variable 

Relationship 
N 

R2 

(linear, quadratic) 
p  

(linear, quadratic) 

capture rate (2009) TP (2009) - 20 0.17, 0.17 0.04, 0.08  
capture rate (2009) TN (2009) - 20 0.03, na 0.23, na 
capture rate (2010) TP (2010) - 20 0.27, 0.29 0.01, 0.02 
capture rate (2010) TN (2010) + 20 -0.04, na  0.58, na 
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Table S6. Fit of linear and quadratic responses of 2010 Batrachochytrium 

dendrobatidis (Bd) prevalence at the start of breeding (T1), one week later (T2), 

and loads (T1 and T2) to total phosphorus (TP), total nitrogen (TN), and host 

densities (capture rate) of adult chorus frogs (n ≥ 30 per pond) collected during 

breeding from 20 ponds on Arizona’s Mogollon Rim in 2009 and 2010.   Bold 

signifies statistically significant relationships 

*One pond (NN13) was not sampled at T2 and therefore dropped from analyses that involved data from this time point 

aValues represent non-parametric Spearman’s Rho correlation coefficients, which were used in place of simple linear 

correlations to account for the non-normal distribution of mean Bd loads in 2010.  

 
 

  

Response variable Explanatory variable Relationship N 
Adjusted R2  

(linear, quadratic)a 
p  

(linear, quadratic) 

Arcsin Bd PrevalenceT1 TP (2009) - 20 -0.05, -0.11 0.92, 0.92 

Arcsin Bd PrevalenceT1 TN (2009) + 20 0.001, NA 0.32, NA 

Arcsin Bd PrevalenceT1 Capture rate (2009) + 20 -0.02, NA 0.49, NA 

Arcsin Bd PrevalenceT1 TP (2010) - 20 -0.05, -0.05 0.79, 0.63 

Arcsin Bd PrevalenceT1 TN (2010) + 20 -0.008, NA 0.37, NA 

Arcsin Bd PrevalenceT1 Capture rate (2010) + 20 0.05, NA 0.18, NA 

Arcsin Bd PrevalenceT2 TP (2009) - 19 -0.05, -0.10 0.67, 0.84 

Arcsin Bd PrevalenceT2 TN (2009) + 19 -0.05, NA 0.74, NA 

Arcsin Bd PrevalenceT2 Capture rate (2009) + 19 0.05, NA 0.18, NA 

Arcsin Bd PrevalenceT2 TP (2010) - 19 -0.05, -0.07 0.80, 0.72 

Arcsin Bd PrevalenceT2 TN (2010) + 19 0.03, NA 0.23, NA 

Arcsin Bd PrevalenceT2 Capture rate (2010) + 19 0.08, NA 0.12, NA 

log mean Bd loadT1 TP (2009) - 20 -0.27 a 0.26, na 

log mean Bd loadT1 TN (2009) - 20 -0.09 a 0.71, na 

log mean Bd loadT1 Capture rate (2009) + 20 0.32 a 0.16, na 

log mean Bd loadT1 TP (2010) - 20 -0.23 a 0.34, na 

log mean Bd loadT1 TN (2010) + 20 0.23 a 0.34, na 

log mean Bd loadT1 Capture rate (2010) + 20 0.32 a 0.16, na 

log mean Bd loadT2 TP (2009) - 19 -0.22 a 0.35, na 

log mean Bd loadT2 TN (2009) + 19 0.17 a 0.47, na 

log mean Bd loadT2 Capture rate (2009) + 19 0.43 a 0.06, na 

log mean Bd loadT2 TP (2010) - 19 -0.07 a 0.76, na 

log mean Bd loadT2 TN (2010) + 19 0.37 a 0.12, na 

log mean Bd loadT2 Capture rate (2010) + 19 0.55 a 0.02, na 
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Table S7. Sample size, date of collection, and prevalence of Batrachochytrium 

dendrobatidis (Bd) sampled from 2 life stages of boreal chorus frogs (Pseudacris 

maculata) from 15 ponds on Arizona’s Mogollon Rim.  

  Adults   Young-of-year 
Pond Date sampled n Bd prevalence  

(± 95% CI) 
  Date sampled n Bd prevalence  

(± 95% CI) 

27 Mile 6-Apr-10 30 57 (39-73) 
 

15-Jun-10 30 10 (4-26) 

Alder Lake 5-May-10 30 60 (42-75) 
 

29-Jun-10 29 0 (0-12) 

Aspen Lake 5-May-10 30 100 (89-100) 
 

18-Jun-10 30 0 (0-11) 

Bar D 24-Apr-10 30 63 (45-78) 
 

28-Jun-10 31 0 (0-11) 

Brolliar Park Tank 4-May-10 30 37 (22-55) 
 

5-Jul-10 30 0 (0-11) 

Brolliar Wet Land 4-May-10 30 53 (36-70) 
 

5-Jul-10 33 6 (2-21) 

Calloway Lake 8-Apr-10 30 70 (52-83) 
 

15-Jun-10 30 3 (1-17) 

Clints 14-Apr-10 30 10 (4-26) 
 

28-Jun-10 30 0 (0-11) 

Mahan Park 9-Apr-10 30 20 (10-37) 
 

16-Jun-10 30 0 (0-11) 

Mud Tank 23-Mar-10 30 0 (0-11) 
 

17-Jun-10 28 0 (0-12) 

NN13 15-Apr-10 25 0 (0-13) 
 

15-Jun-10 29 0 (0-12) 

Salmon 24-Mar-10 24 88 (69-95) 
 

8-Jun-10 30 0 (0-11) 

Tbar 2 25-Mar-10 29 41 (25-59) 
 

8-Jun-10 30 0 (0-11) 

Twin Ponds 10-Apr-10 40 12 (6-26) 
 

16-Jun-10 30 0 (0-11) 

ZZ tank 26-Apr-10 30 34 (19-51)   27-Jun-10 30 7 (2-21) 
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Table S8. Water temperatures and prevalence of Batrachochytrium dendrobatidis 

(Bd) in boreal chorus frogs (Pseudacris maculata) collected during breeding and 

development from a perennial (27 Mile) and ephemeral (Twin) pond in Arizona.  

Pond date life stage n Bd prevalence 
(95% CI) 

mean load 
(GE) Cumulative 

days above 28 
C 

Cumulative 
days above 30 

C 

27 Mile  4-Mar-11 adult 31 55 (38-71) 44.3 0 0 

27 Mile  9-Mar-11 adult 32 56 (39-72) 692.8 0 0 
27 Mile  14-Mar-11 adult 33 21 (11-38) 26.1 0 0 

27 Mile  19-Mar-11 adult 30 23 (12-41) 1224.0 0 0 
27 Mile  24-Mar-11 adult 20 90 (70-97) 2318.0 0 0 

27 Mile  29-Mar-11 adult 31 100 (89-100) 8636.0 0 0 

27 Mile  3-Apr-11 adult 31 100 (89-100) 14135.0 0 0 
27 Mile  12-Apr-11 adult 18 100 (83-100) 19427.0 0 0 

27 Mile  17-Apr-11 larvae 150 0 (0-2) 0.0 0 0 
27 Mile  5-May-11 larvae 150 7 (4-12) 1554.0 1 0 

27 Mile  1-Jun-11 larvae 150 53 (45-61) 2506.0 4 0 

27 Mile  1-Jun-11 juvenile 32 13 (5-28) 13.0 4 0 
27 Mile  24-Jun-11 juvenile 31 39 (24-56) 512.0 12 4 

27 Mile  19-Jul-11 juvenile 11 64 (34-85) 162.0 na na 
Twin 10-Mar-11 adult 30 3 (1-17) 6.9 0 0 

Twin 15-Mar-11 adult 29 10 (4-27) 30.1 0 0 
Twin 19-Mar-11 adult 5 0 (0-46) 0.0 0 0 

Twin 25-Mar-11 adult 7 42 (16-76) 134.7 0 0 

Twin 29-Mar-11 adult 31 87 (71-95) 1960.0 0 0 
Twin 3-Apr-11 adult 31 100 (89-100) 2256.0 0 0 

Twin 17-Apr-11 adult 18 100 (82-100) 11740.0 0 0 
Twin 23-Apr-11 larvae 150 0 (0-2) 0.0 0 0 

Twin 5-May-11 larvae 150 0 (0-2) 0.0 0 0 

Twin 1-Jun-11 larvae 150 0 (0-2) 0.0 7 2 
Twin 1-Jun-11 juvenile 30 0 (0-9) 0.0 7 2 

Twin 24-Jun-11 juvenile 31 0 (0-9) 0.0 26 17 
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Figure S1. Average Batrachochytrium dendrobatidis (Bd) load was significantly 

positively correlated with Bd prevalence within ponds in (a) 2009 (ANOVAdf =19, r2 = 

0.71, p < 0.0001), as well as (b) T1 (ANOVAdf =19, r2 = 0.87, p < 0.0001) and (c) T2 

(ANOVAdf =18, r2 = 0.74, p < 0.0001) in 2010 


