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Abstract

Prey can invest in a variety of defensive traits when balancing risk of predation against that of starvation. What remains
unknown is the relative costs of different defensive traits and how prey reconcile investment into these traits when
energetically limited. We tested the simple allocation model of prey defense, which predicts an additive effect of increasing
predation risk and resource availability, resulting in the full deployment of defensive traits under conditions of high risk and
resource saturation. We collected morphometric, developmental, and behavioural data in an experiment using dragonfly
larvae (predator) and Northern leopard frog tadpoles (prey) subject to variable levels of food availability and predation risk.
Larvae exposed to food restriction showed limited response to predation risk; larvae at food saturation altered behaviour,
development, and growth in response to predation risk. Responses to risk varied through time, suggesting ontogeny may
affect the deployment of particular defensive traits. The observed negative correlation between body size and activity level
for food-restricted prey – and the absence of a similar response among adequately-fed prey – suggests that a trade-off
exists between behavioural and growth responses when energy budgets are limited. Our research is the first to
demonstrate how investment into these defensive traits is mediated along gradients of both predation risk and resource
availability over time. The interactions we demonstrate between resource availability and risk level on deployment of
inducible defenses provide evidence that both internal condition and extrinsic risk factors play a critical role in the
production of inducible defenses over time.
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Introduction

There is an extensive conceptual framework for predicting how

animals balance foraging activity and nutritional status against

vulnerability to predators and exposure to predation risk [1,2,3].

The starvation–predation risk trade-off predicts that when food

resources are limited, prey should act in a predation risk-prone

manner and acquire requisite energy through foraging, but the

cost of such a response is an increased exposure to predation risk

[1]. In contrast, when food is abundant, prey should employ a

predation risk-averse strategy by decreasing the probability of

predator encounters at the cost of reduced foraging time. State-

dependent models of investment in defense consider the starva-

tion-predation risk trade-off from the perspective of an individual’s

condition (e.g. nutritional status) rather than through extrinsic risk

factors [4]. Individual animals with a lower nutritional status

should spend more time engaging in risky behaviour (e.g.,

foraging) compared to those with adequate energetic reserves.

The simple allocation model predicts that animals with greater

resource availability should invest surplus energy into predator

avoidance or defense [5,6,7].

Sublethal effects of predation are not limited to behavioural

responses and predation risk can also induce changes in prey

morphology and life history. Plastic responses to predation risk can

ultimately reduce fitness and alter population density; such effects

are in addition to the direct effects of predation [8,9,10]. Alternate

phenotypes that are designed to reduce predation risk may be

more energetically costly to produce and maintain [8,11], and the

induction of defensive morphologies can result in reduced growth

as well as lower lifetime reproductive output [12,13]. Behavioural

responses also are subject to the growth-predation risk trade-off,

with reduced foraging activity leading to higher survivorship but at

the cost of lower resource acquisition [14,15,16]. Therefore, when

resources are limited, animals may not be able to mount the full

suite of responses to predation risk, as behavioural plasticity must

be considered in conjunction with plasticity in morphology and life

history.

Selection should favour prey that appropriately balance

behavioural and morphological plasticity in the face of predation

risk. Increased vulnerability via the loss of a morphological defense

(such as that occuring after defensive autotomy) alters behavioural

anti-predator strategies, causing increased refuge use and reduced

foraging success [17,18,19]. What remains unclear is whether the

opposite holds true – whether prey that exhibit predator-induced

morphological defenses also show riskier behaviour to increase

foraging success. Energy limitation may restrict prey ability to

modify foraging activity according to predation risk [2,20].
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Morphological variation may therefore be an important alterna-

tive response to reduce risk during predator encounters when

behavioural responses are too costly, and it is likely that

morphological plasticity is especially prevalent when food is

restricted and behavioural responses are absent. Indeed, some

models of larval defense investment predict that morphological

responses should be insensitive to resource level, whereas

behavioural responses will vary with resource availability relative

to the cost of reduced growth rates and size at metamorphosis

[21]. Alternatively, investment in morphological defense may be as

energetically costly as a behavioural defense and morphological

responses could therefore reflect resource availability to a similar

extent. Predator-induced morphologies have been associated with

higher energetic and developmental costs, such as reduced growth

in body tissue [22] or shorter gut length and reduced digestion

efficiency [23]. It follows that severe food-restriction should lead to

neither behavioural nor morphological responses to predation risk,

whereas prey with unrestricted access to resources should channel

any excess energy into avoiding predation risk. Accordingly, we

expect plastic responses in both behaviour and morphology among

animals with abundant food resources.

Evaluation of investment into morphological versus behavioural

defenses across a resource gradient in larval prey is further

complicated by ontogeny. Growth and development rates can

reflect responses to predation risk, optimal size at metamorphosis,

optimal timing of metamorphosis, or any combination thereof

[21]. Models with fixed size constraints at metamorphosis have

predicted investment into both morphological and behavioural

defenses should peak at intermediate resource levels [7]. However,

prey may employ a strategy of maturing at a smaller body size

rather than investing in morphological defenses if the benefit of

escaping mortality risk by leaving the larval habitat outweighs

fitness costs of that smaller body size [21]. Alternatively, prey

could invest heavily in morphological responses while only slightly

reducing activity levels as an anti-predator strategy by delaying

metamorphosis and emerging at a larger body size, assuming food

acquisition is not lower under predation risk [24]. Therefore, a

number of anti-predator strategies are possible under food

restriction, including accelerated development with no morpho-

logical and/or behavioural response, prey responding either

behaviourally or morphologically, or a combination of both

behavioural and morphological responses coupled with a longer

larval period (slower development rate). Larval period is

constrained by the onset of winter for Northern leopard frogs,

therefore the trade-off may not necessarily be between starvation

and predation risk, but rather metamorphic timing and predation

risk – tadpoles that wait too long to transform face mortality from

freezing temperatures and/or dessication. Therefore, tadpoles

under resource restriction could show a trade-off between

behavioural and morphological responses to predation risk, with

no cost to development rate, or a trade-off between investment in

both defense types and development rate. When there is no

energetic constraint, we predict tadpoles will show both morpho-

logical and behavioural anti-predator responses, with no corre-

sponding declines in either growth or development rates. Indeed,

tadpoles will likely accelerate growth and development in response

to higher resource availability, as there are documented benefits

from leaving the ponds earlier and/or at a larger size [25,26].

Using a dragonfly larva-frog tadpole system, we tested the

hypothesis that resource limitation constrains prey ability to

respond to predation risk. Our null hypothesis is the simple

allocation model, which predicts that the expression of phenotypic

plasticity will depend on resource availability relative to the level of

predation risk. Severely food-restricted tadpoles will show no

response to risk, moderately food-restricted tadpoles will express

either a morphological or behavioural response to high risk, and

food-saturated tadpoles will exhibit responses to predation risk in

all traits. Northern leopard frog (Lithobates pipiens) tadpoles typically

respond to predation risk by decreasing activity [27,28,29,30] and

increasing relative tail fin and/or tail muscle depth [28,29]. While

plasticity in life history traits in response to predation risk varies

both within and between species [27,31,32], we predicted that

with no food limitation tadpoles would increase both body size

[29] and development speed when under predation risk. In many

predator-prey systems, larger body size can reduce vulnerability to

predation and larger-bodied prey may acquire more resources by

foraging in increasingly risky situations [33,34]. Attaining larger

body size or metamorphosing earlier requires channelling energy

into growth and development, which may not be possible for

energetically-constrained prey. Statistically, variability in the effect

of food and predation risk should be evidenced by a significant

interaction term between resource and predation treatments.

Energy-mediated trade-offs in prey responses would be evidenced

by a negative correlation between the magnitude of behavioural

versus morphological responses to predation risk.

Methods

Experimental design
We used a 363 factorial design to test the effect of both resource

level and predation risk intensity on tadpole morphology, life

history, and behaviour (n = 6 replicates). Resource level treatments

were severe food restriction, moderate restriction, or saturation,

corresponding to 2%, 5%, or 20% of the total mass of the tadpoles

per aquarium, provided as daily supplementation of crushed algae

discs [35]. We selected the above food levels because food rations

comprising 2% body mass are known to be severely restricting in

tadpoles [36], whereas 20% body mass usually constitutes

excessive food [37,38]. The 5% level was chosen as the

intermediate because we sought to detect any non-linearity in

tadpole responses to food addition and predation risk, and

preliminary work revealed that tadpole responses were highly

sensitive to subtle changes in the range of 2–10% body mass (D.

Pereira, unpubl.). Predators were dragonfly larvae (Aeshna spp.)

collected from local ponds. Predators were housed in a separate

40 L bin and fed two leopard frog tadpoles every other day.

Tadpoles from many frog species (including L. pipiens) can detect

chemical cues from predators [39,40] and exhibit plasticity in

morphology and behaviour in response to those cues [41,42,43].

Water from the predator bin was added to tadpole aquaria at the

same time daily (AM) to create three perceived predation risk level

treatments: none = 0 mL predator water +300 mL aged tap water,

low = 100 mL predator water +200 mL aged tap water, and

high = 300 mL predator water +0 mL aged tap water. Chemical

cues of predation persist in the aquatic environment over multiple

days [44], therefore tadpoles had a consistent exposure to

predation risk over the experimental period.

Northern leopard frog egg masses were collected in April 2009

from ponds near Peterborough, Ontario (44u229N, 78u039W).

Two broods were reared in 110 L containers to Gosner

developmental stage 25 (active, free swimming tadpoles) [45].

Tadpoles were then divided among 54 (9 treatments with 6

replicates each) 12 L glass aquaria filled with approximately 10 L

of aged tap water. The laboratory was kept at 18–22uC, and

aquaria were cleaned twice weekly by replacing 50% of the water.

Each aquarium housed 30 tadpoles, 15 from each brood. This

design was strategic in that it allowed us to homogenize the

composition of each experimental unit while also introducing

Defense and the Starvation-Predation Risk Tradeoff
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genetic variability in the study population. Recent studies have

found low heritability in the behavioural response of tadpoles to

predation risk [46,47], and between-population genetic variation

appears to largely overshadow within-population variation in

phenotypic plasticity, with relatively few sibships from a single

pond representing the general population responses [36,48].

Therefore, our design ensured that results would be both sensitive

to experimental manipulation and also generalizable to the

broader population.

Data collection
Behavioural data were collected at the same time daily (PM), six

days a week, by counting the number of active (tail movement of

any kind) and non-active tadpoles per aquarium during 30 second

scans. Ten tadpoles were removed each week for morphometric

data collection. All ten tadpoles were staged [45] using a dissecting

microscope and weighed using a digital balance. Five tadpoles

were then photographed at a fixed distance using a Nikon D70

digital camera equipped with a Tamron 90 mm macro 1:1 lens.

Tadpole shape and size was characterized using sixteen landmarks

that reflect basic morphological features (figure 1) [43], digitized

directly onto each picture, using the software ImageJ (US NIH,

Bethesda, MD). We averaged landmark coordinates by aquarium,

and then calculated composite shape variables and centroid size

(shape-independent size) using a full Procrustes fit in MorphoJ

1.04b software [49]. Tadpoles were returned to their aquarium of

origin after data collection.

Ethics statement
This study was approved by the Trent University Animal Care

Committee (Protocol 09013) and strictly followed the Canadian

Council on Animal Care’s guidelines for ethical animal use.

Collection of egg masses and dragonfly larvae was approved

through the Ontario Ministry of Natural Resource’s Wildlife

Scientific Collectors Authorization, and was carried out with

landowner permission. Collection did not involve endangered or

specially protected species.

Data analysis
Tadpole mass was log-transformed, and then log(mass), stage,

and centroid size were used as dependent variables in three

general linear mixed-effects models, with predation risk, resource

level, and week as fixed factors, and aquarium as a random factor.

Developmental stage was treated as a continuous variable [50,51].

To look at tadpole shape, we conducted a Principal Components

Analysis (PCA) for all weeks combined using the aquarium

averages of the shape variables in MorphoJ 1.04b software [49].

Based on examination of the scree diagram [52], we took the first

three principal components, explaining cumulatively over 80% of

the variation in the data, and used them (PC1, PC2, PC3) as

dependent variables in general linear mixed effects models with

predation risk, resource level, and week as fixed factors, and

aquarium as a random factor. Data met the assumptions of

normality and homeoscedacity for these tests. We used Bonferroni

correction for analyses of mass and centroid size, as they both

reflect tadpole size (corrected a= 0.025) and for analyses of

tadpole shape (PC1, PC2, and PC3) since they are all measure-

ments of shape change (corrected a= 0.017). Significance was set

at a= 0.05 for analyses of tadpole activity and developmental

stage. Behavioural data were proportional and therefore activity

was used as a dependent variable (with binomial error distribution)

in a generalized linear mixed effects model, with predation risk,

resource level, and week as fixed factors, and aquarium as a

random factor, using the R statistical package ‘lme4’ [53].

Significance in the generalized linear mixed effects model was

determined using a type III test of fixed effects (a= 0.05) analysis

of variance in the R statistical package ‘MixMod’ [54].

We conducted a series of three correlation analyses to assess

whether the relationship between behavioural (activity) and

morphological (centroid size, shape) responses to predation risk

changed at different resource levels. Behavioural data were arcsine

square root transformed to meet the assumption of normality. PC1

was used as the measurement of tadpole shape, as it was the only

principal component that varied significantly with predation risk

(table 1). We used response data from all three weeks and risk

levels so that we could detect trade-offs across the whole spectrum

of both time and predation risk that was encompassed by our

experimental protocols. Relationships were assessed using Pear-

son’s product-moment correlation (r) and significance was set at

a= 0.025 after Bonferroni correction for multiple comparisons.

Differences between slopes of the relationships were assessed using

a t-test [55]. Mixed effects models were run using program R (R

Development Core Team 2011). Correlations and graphs were

made using Statistica 7.0 (StatSoft 2004).

Results

Growth and development
Tadpoles at the saturation level of resource availability were

significantly heavier, larger, and further developed than those at

either moderate or severe food restriction (P,0.0001, in all cases).

There was an interaction between predation risk and resource

level on tadpole centroid size (F4, 45 = 5.7, P = 0.0008) and mass

(F4,45 = 3.2, P = 0.021); only tadpoles at saturation responded to

predation risk with increasing levels of predation risk resulting in

increases in body size (mass: F2,45 = 5.2, P = 0.009; centroid size:

F2,45 = 5.9, P = 0.005; figure 2). There was also an interaction

between resource availability and week on all measured traits

(P,0.0001, in all cases), with tadpoles showing the greatest

Figure 1. Wireframe drawing of shape change (grey line) against average tadpole shape (black line) described by an increase in the
first principal component (PC1) of a Principal Components Analysis (PCA) for all weeks combined using the aquarium averages of
sixteen landmarks.
doi:10.1371/journal.pone.0082344.g001
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increase in size and development during the third week of the

experiment. Development was accelerated in response to preda-

tion risk (F2,45 = 5.0, P = 0.011), and was influenced by a 3-way

interaction between predation risk, resource level, and experi-

mental week (F8, 90 = 5.1, P,0.0001). Tadpoles showed no

response to predators during week 1, response to the highest

predation risk level only from tadpoles at resource saturation

during week 2, and an increasing response to both low and high

predation risk, but again only from tadpoles at resource saturation,

during week 3 (figure 3, top). Neither mass (F8,90 = 1.0, P = 0.44)

nor centroid size (F8,90 = 1.4, P = 0.21) showed a similar three-way

interaction.

Behaviour
In general, tadpoles decreased activity with increasing predation

risk (F1,1016 = 602.2, P = 0.01) but not resource availability

(F1,1016 = 0.01, P = 0.92); however, these effects varied depending

on the experimental week (Resource x Week: F1,1016 = 4.83,

P = 0.03; Predation x Week: F1,1016 = 27.70, P,0.001). Resource

availability influenced activity level during the first week of the

experiment, whereas predation risk effects were more pronounced

during the second and third weeks (figure 3, middle). There was no

significant interaction between predation risk and resource

availability (F1,1016 = 0.10, P = 0.75), nor was there a three-way

interaction between predation risk, resource availability, and week

(F1,1016 = 0.02, P = 0.88).

Morphology
PC1 (variance explained = 46.2%) described tadpoles with

shallower tails at higher resource availability, and deeper tails

with increased predation risk (figure 3, bottom). There were

significant interactions between week and predation risk as well as

between week and resource availability on PC1 (table 1). Tadpoles

during the first week of the experiment responded to predation risk

by decreasing PC1 (developing shorter, deeper tails), but showed

no clear differences between resource treatments. After the second

week, the effect of predation risk was lost, but increasing resource

availability caused an increase along PC1, with tadpoles having

relatively longer, shallower tails. Finally, by the end of week three,

effects of both predation risk and resource availability were mostly

lost, though tadpoles in the resource saturation treatment still

tended to have relatively longer, shallower tails (figure 3, bottom).

PC2 and PC3 did not vary significantly with either predation risk

or resource availability (table 1).

Trade-offs
There was no evidence of a relationship between activity and

tadpole shape at any resource level (2%: r = 20.02; 5%: r = 20.09;

20%: r = 20.21; all P.0.13; figure 4A). Tadpoles under both

severe (r = 20.41, P = 0.002) and moderate (r = 20.45, P,0.001)

food restriction showed a significant negative relationship between

activity level and body size, but this relationship was not found at

food saturation (r = 20.20, P = 0.14; figure 4B). The slope of the

saturation relationship differed from both moderate (t104 = 2.39,

P = 0.019) and severe (t104 = 22.73, P = 0.008) food restriction,

which, in turn, were not different from each other (t104 = 20.67,

P = 0.50).

Discussion

Our data supported the simple allocation model - tadpoles at

saturation increased body size, decreased activity, and accelerated

development in response to predation risk whereas tadpoles under

food restriction failed to show similar responses to increased risk.

Body size and activity were negatively correlated under restricted

resources but not at saturation, however, we found no evidence of

a trade-off between tadpole shape and activity at any resource

level. We also noted a significant effect of time on direction and

magnitude of behavioural, morphological, and developmental

responses. Contrary to previous studies, which generally show

either an increasing or steady morphological response over

exposure time [57,58,59], tadpoles altered tail shape in response

to predation risk only during the first week of the experiment.

During the second and third weeks of the experiment, only prey at

resource saturation responded to predation risk by increasing

growth and development rates while lowering activity levels.

The lack of difference in response to predation risk between our

moderate and severe restriction treatments (2% and 5% of body

mass fed daily as crushed algae discs, respectively) is puzzling.

Tadpoles from a number of species, including Northern leopard

frogs, have been shown to respond to predation risk both

morphologically and behaviourally at resource levels comparable

Table 1. Univariate results of a factorial ANOVA using the first
three principal components from PCAs on Northern leopard
frog (Lithobates pipiens) tadpole shape variables, over three
weeks of experimentation at three resource level treatments
(2%, 5%, and 20% of total tadpole mass per aquarium given as
food every other day) and three predation risk level
treatments (0 mL, 100 mL, and 300 mL predator-treated
water added daily).

F d.f. P

PC1

Resource Level 10.1 2, 45 0.000

Predation Risk 19.5 2, 45 0.000

Resource x Predation 1.4 4, 45 0.248

Week 647.4 2, 90 0.000

Predation x Week 32.0 4, 90 0.000

Resource x Week 7.2 4, 90 0.000

Predation x Resource x
Week

1.9 8, 90 0.076

PC2

Resource Level 2.5 2, 45 0.094

Predation Risk 2.5 2, 45 0.092

Resource x Predation 0.2 4, 45 0.912

Week 0.1 2, 90 0.941

Predation x Week 1.3 4, 90 0.267

Resource x Week 22.8 4, 90 0.000

Predation x Resource x
Week

1.1 8, 90 0.345

PC3

Resource Level 1.6 2, 45 0.220

Predation Risk 4.2 2, 45 0.021

Resource x Predation 0.7 4, 45 0.730

Week 11.0 2, 90 0.000

Predation x Week 3.9 4, 90 0.006

Resource x Week 5.4 4, 90 0.001

Predation x Resource x
Week

0.8 8, 90 0.625

Significant results are in bold.
doi:10.1371/journal.pone.0082344.t001
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to our treatments (2% and 4% body mass/day) [60,61]. In both

those studies, predators were housed in cages held within tadpole

enclosures [60,61]; it is possible that by adding cue water,

perceived predation risk was too low (due to dilution or a lack of

visual cues) to elicit a response at restricted resource level.

Therefore, trade-offs between defense types, and investment in

defense versus life history under food restriction, are likely to be

manifested only under high levels of predation risk. However, in

our experiment, tadpoles at saturation did respond to the addition

of cue water, and the magnitude of the response increased between

the low and high predation risk treatments, demonstrating that

tadpoles were capable of detecting and responding to differences

in the cue concentrations. Furthermore, our resource saturation

treatment (20%) is comparable to other studies of resource

availablity on tadpole response (16%–18%) [60,61], and our

growth and development rates at resource saturation are similar to

published data for Northern leopard frog under ad lib conditions

(15%) [62] as well as for wild populations [63,64]. Therefore, we

are confident that responses found in our experiment at resource

saturation represent biologically significant defenses of prey to

predation risk.

Despite being a relatively short experiment (three weeks), we

found significant temporal variation in activity, tail morphology,

and development in response to both predation risk and resource

availability. Tadpoles in the first week had relatively deeper tails

but showed no change in behaviour in response to predation risk;

however, they did decrease activity levels in response to increasing

resource availability. From the literature we would expect a higher

magnitude of behavioural response to predation risk earlier in

development at smaller, more vulnerable, body sizes [57,58,59].

Stage-specific responses to predation risk are thought to reflect

threat-sensitivity by prey in situations where predation risk varies

with body size or developmental stage [65,66]. For anuran larvae,

plastic responses may also be constrained by developmental

capabilities during ontogeny [67]. Alternatively, morphological

defenses are predicted to be insenstive to resource availability in

models that allow for flexibility in developmental timing and size

at metamorphosis [21]. That is, morphological responses will be

favoured if those defenses allow prey to stay in the larval

environment longer and attain a larger size at metamorphosis.

Such a response has been noted in Rana temporaria, where tadpoles

increased relative tail depth in response to predator presence

regardless of competitor density [68]. Our data support this model,

but only in the first week of the experiment, after which the

morphological response to predators is lost and a behavioural

response (decreasing activity level) is gained under resource

saturation.

In theory, decreasing activity in response to predation risk

results in declining rates of growth and/or development

[67,69,70]. However, this conflict between growth and predation

risk is not a universal phenomenon, with some studies revealing no

decrease in growth or development despite lower activity levels in

response to predation risk [28,71]. Changes in body size in

response to predation risk may be an artefact of experimental

venue [72] and body size is considered in some studies to be a non-

adaptive response to predation risk [7]. Conversely, the acceler-

ation of growth could be adaptive because size matters to survival

when predators are gape-limited [73,74]. In amphibian systems,

smaller tadpoles face higher predation risk from dragonfly larvae

than do larger tadpoles [75,76], and relatively larger dragonfly

larvae are more effective at capturing and consuming prey [77].

Northern leopard frogs can increase body size in response to

predation risk despite a concurrent decrease in all activities,

including foraging [27,30], suggesting body size in this species may

be a defensive trait. While we cannot determine the adaptive value

of body size based on our experimental results, we did find that

tadpoles at resource saturation increased mass in response to

predation risk, showing that conflict between growth allocation

and predation risk avoidance becomes inconsequential if resources

are sufficiently abundant.

The importance of body size is considered further in our trait

correlation analysis. Under resource restriction, but not saturation,

we found a negative relationship between tadpole activity and

body size. We cannot determine the causal direction of this

relationship from our data, that is, whether larger tadpoles become

less active or less active tadpoles also grow larger. We also know of

no previous study that has documented a comparable change in

the relationship between behavioural and morphological anti-

predator responses under different levels of resource availability.

Foraging theory suggests that once an animal’s basic nutritional

needs are met, its risk sensitivity increases which, in turn, leads to

lower activity [1,6]. It is possible that tadpoles must reach a

threshold body size before altering activity rates in response to

predation risk, and that the negative correlation we found

Figure 2. Interaction plots of resource level (2%: severe restriction, 5%: moderate restriction, 20%: saturation) and predation risk
(none, low, high) on mean (±95% CI) A: Centroid Size and B: Mass (g) of Northern leopard frog (Lithobates pipiens) tadpoles.
doi:10.1371/journal.pone.0082344.g002

Defense and the Starvation-Predation Risk Tradeoff
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Figure 3. Interaction plots of resource level (2%: severe restriction, 5%: moderate restriction, 20%: saturation) and predation risk
(none, low, high) on mean (±95% CI) developmental stage (top), activity (proportion of active tadpoles per aquarium; middle), and
shape (PC1; bottom) of Northern leopard frog (Lithobates pipiens) tadpoles averaged by week, across three weeks of
experimentation.
doi:10.1371/journal.pone.0082344.g003

Defense and the Starvation-Predation Risk Tradeoff
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represents the relationship between body size and a behavioural

response to risk. We are unable, however, to discount the

physiological explanation that tadpoles that are less active expend

less energy and are therefore able to grow larger. Yet, this

explanation is not entirely satisfying as we expect the relationship

to also be present at resource saturation, which it was not, and

activity in our study was defined as all movement, including

feeding behaviours. Furthermore, we found a significant effect of

time on behavioural response: tadpoles decreased activity levels in

response to predation risk only during the second and third weeks

of the experiment. This too provides support for the hypothesis

that tadpoles must reach a minimum body size before responding

behaviourally to perceived risk.

The simple allocation model was supported by our data,

however, we were unable to distinguish defensive responses

between severe and moderate resource restriction treatments

and we found significant temporal variation in both the type and

magnitude of defensive response. The importance of body size as

either a confouding variable or anti-predator strategy is highlight-

ed by our finding that, during the first week of the experiment

when tadpoles were at their smallest body sizes, prey showed only

a morphological, not behavioural, response to predation risk.

However, during the second and third weeks of the experiment,

tadpoles increased body size and development rate while

decreasing activity level in response to predators, but lost any

differences in shape. Body size was also negatively related to

activity level, but only when resources were restricted, suggesting

that body size may play a role in determining the deployment of

behavioural defenses. Accordingly, there is a need to more fully

quantify the adaptive value of body size as a function of both

predator defense and as a life history trait. Further studies are

needed to determine how higher levels of predation risk interact

with resource availability over the entire length of the larval

period. Our results provide an important starting point for

understanding how interactions between condition and extrinsic

risk factors may play a critical role in the production of inducible

defenses over time.
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