DETERMINING HABITAT CHARACTERISTICS THAT PREDICT OVIPOSITION SITE SELECTION FOR POND-BREEDING NORTHERN RED-LEGGED FROGS (RANA AURORA) IN HUMBOLDT COUNTY, CALIFORNIA

By

Jennifer Ann Cary

A Thesis

Presented to

The Faculty of Humboldt State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Arts

In Biology

May, 2010

DETERMINING HABITAT CHARACTERISTICS THAT PREDICT OVIPOSITION SITE SELECTION FOR POND-BREEDING NORTHERN RED-LEGGED FROGS (RANA AURORA) IN HUMBOLDT COUNTY, CALIFORNIA

By

Jennifer Ann Cary

We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts.

Sharyn B. Marks, Major Advisor	Date
Bret C. Harvey, Committee Member	Date
Erik S. Jules, Committee Member	Date
Frank J. Shaughnessy, Committee Member	Date
Michael R. Mesler, Graduate Coordinator	Date
Jena' Burges, Vice Provost	Date

ABSTRACT

In species where offspring are restricted to neonatal habitats, fitness is dependent upon oviposition site selection by females, a concept often referred to as the preferenceperformance hypothesis. Before determining if this hypothesis can be applied to a particular species, it is necessary to know what habitat characteristics influence site selection. My study assessed which habitat characteristics are preferred for oviposition in *Rana aurora* (Northern Red-legged Frog) in northern Humboldt County, California. I had two objectives: (1) to determine what habitat characteristics predict oviposition site use by *R. aurora*, and (2) to identify what characteristics predict the density of egg masses at a pond. This study took place at 30 ponds across northern Humboldt County, California, which were visited weekly from December-April during the 2007-2008 breeding season. Pond characteristics assessed were number of egg masses, water temperature, pond area, canopy cover, emergent vegetation, floating vegetation, woody vegetation, and presence/absence of other amphibians and fish.

There was a higher probability of egg masses being found in ponds with relatively low canopy cover, and greater densities of egg masses occurred in ponds with high levels of emergent and floating vegetation. These findings are supported by previous studies that show that *R. aurora* attach their egg masses to emergent vegetation and tadpoles use this vegetation as a nursery. Both of these results suggest that female *R. aurora* are actively selecting sites to increase offspring performance, but more research will be needed to determine if offspring survival is affected.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Sharyn Marks, for providing me support, guidance, and teaching me how to write properly. I must also thank her for putting up with my love for birds; it must have been frustrating to have a student in love with a warm-blooded taxon. Many thanks go out to my committee members: Frank Shaughnessy for always challenging me to strive for my best; Bret Harvey for his statistical advice, encouragement, and refreshing ideas; and to Erik Jules for his endless support, generous heart, and never fading smile.

I would also like to thank all those who assisted me in my research. Thank you to Marty Reed for assistance in building field equipment, to stockroom managers Anthony Baker and Anthony Desch for loaning me field equipment, to Howard Stauffer and Mark Rizzardi for statistical advice, to Carrie Sendak and the "Frog-man" Jamie Bettaso for introducing me to the world of Red-legged Frogs, and to all the folks at Herp Group for their support and constructive guidance. Much gratitude goes to all my field crew for wading through deep, freezing-cold waters in search of egg masses: Babs McCoy, Tony Stemski, Sarah Dobson, Kevin Creely, Sam Harkous, Bryan Daniels, Ben Newby, and to the many others who came out on occasion.

My research would not have been possible were it not for the generosity of the pond owners for allowing me to stake bright red flags in their ponds for months. Much appreciation goes to: Shannon Smith (Humboldt Bay National Wildlife Refuge), Sharyn Marks and Hartwell Welsh, Alison Young/Ben Crain/Bonnie Palmire, Jack Yarnall, Eric Johnson (Potowat Indian Heath Village), John Stuart and Gordon Schatz (HSU Schatz Demonstration Tree Farm), Julie Neander (City of Arcata), Susan Ornelas (Jacoby Creek Land Trust), Michael King, Randy Brown, Heather Beeler, and Carol and CJ Ralph. I would also like to especially thank Ryan Bourque of Green Diamond Resource Company who drove me around to numerous sites and provided continual academic and emotional support throughout my research. I appreciate financial support from Sharyn Marks and two HSU Biology Master's Student Grants.

Big thanks go out to Heather Beeler for always being a great friend and consoling my worries; to Judd Patterson who always supported me, even from 3000 miles away; to Adam Stevenson who helped decipher editorial comments and always believed in me; and to my second "parents" Wayne Meyer and Kim Snipes who got me started in research and whose love and guidance have helped me through the toughest times. I dedicate this thesis to my parents who introduced me to the world of herpetology and showed me the beauties of nature from an early age. Thank you for your unconditional love and support, I have made it this far because of you.

TABLE OF CONTENTS

ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
INTRODUCTION	10
MATERIALS AND METHODS	16
Study sites	16
Monitoring water temperature	16
Fish sampling	19
Egg mass surveys	20
Determining pond vegetation and canopy cover	20
Statistical analysis	21
RESULTS	24
Egg mass surveys	24
Predicting the presence/absence of egg masses	25
Impacts on egg mass density per pond	26
Other observations	29
DISCUSSION	30
Predicting the presence/absence of egg masses	30

Impacts on egg mass density	33
Conclusion	33
LITERATURE CITED	35
APPENDIX A: Graph of water temperature from 24 of the 30 ponds during the 2007-2008 breeding season	41
APPENDIX B: Background information and raw data for statistical analysis for the 30 ponds	42
APPENDIX C: Amphibian and fish sampling at each pond	44

LIST OF TABLES

Table		Page
1	List of predictor variables used in analysis	22
2	<i>A priori</i> regression models with the response variable as the natural log of the total number of egg masses (See Table 1 for explanation of variables.)	23
3	Results from binary multiple regressions using presence/absence of an egg mass as the response variable	25
4	<i>A priori</i> models results with the response variable as the natural log of the total number of egg masses. Only ponds with at least one egg mass were included in analysis (N=24)	28

LIST OF FIGURES

Figure		Page
1	Map of study sites along the northern California coast in Humboldt County. Squares represent study ponds that are labeled with abbreviations of pond names. (Courtesy of Judd Patterson.)	17
2	Binomial multiple regression results of the relationship between egg masses and canopy cover (N=29)	26
3	Average daily water temperature (°C) for ponds with egg masses compared with ponds without egg masses	27
4	Logistic regression of the natural log of the total number of egg masses and the percent of emergent and floating vegetation	28

INTRODUCTION

The ability of an individual to survive from one life stage to the next is dependent, in part, on the quality of the surrounding habitat. The decision parents make for their offspring's first habitat influences the survival of their offspring (Kaplan 1998). For example, temperature and predators impact survival of offspring in oviparous species (Chivers et al. 2001; Kolbe and Janzen 2002; Johnson et al. 2003; Lloyd and Martin 2004). The consequences of parental decisions affect offspring survival with ultimate consequences for parental fitness.

The preference-performance hypothesis, also known as the "mother knows best" principle, states that parents select oviposition sites to optimize fitness of their offspring (Jaenike 1978; Thompson 1988). This hypothesis was originally proposed for phytophagous insects with juvenile stages that often lack the capability to relocate (Jaenike 1978; Johnson et al. 2006), but it has also been applied to soil-dwelling insects, birds, and reptiles (Kolbe and Janzen 2002; Lloyd and Martin 2004; Johnson et al. 2006). Selective pressure to choose high quality sites should be greatest on species that exhibit oviparity and lack parental care (Crump 1991; Garcia-Gonzales and Gomendio 2003). When organisms leave their eggs unattended they are relying on the habitat to provide protection and food for their offspring. By contrast, parental care gives individuals a chance to increase their offspring's survival even if parents are forced into poor habitats.

The preference-performance hypothesis has only recently been applied to amphibians. Amphibians, like phytophagous insects, have several life stages as they transition from embryos to adults. Depending on the species, these stages, such as salamander larvae or anuran tadpoles, are often incapable of changing habitats (Duellman and Trueb 1994; Kaplan 1998). Many amphibians also lack parental care (Kaplan 1998) and thus a strong selective pressure should exist to maximize their fitness by selecting optimal oviposition sites. To date, only one study has explicitly tested the preference-performance hypothesis on amphibians (Reigler 2004). In that study, survival of *Hyla femoralis* (Pinewood Treefrog) tadpoles was higher when adults oviposited in predator-free environments. Other studies have explored oviposition site selection in amphibians (e.g., Resetarits 1996), but none of these studies related their results to the preference-performance hypothesis nor determined offspring survival or estimated parental fitness.

A critical assumption of the preference-performance hypothesis is that an individual has the ability to choose oviposition sites. One potential contraindication of applying the preference-performance hypothesis to amphibians is that many amphibians exhibit high levels of breeding site fidelity (philopatry), which implies that individuals of such species may not be capable of selecting oviposition sites (Duellman and Trueb 1994; Hayes et al. 2001; Pope and Matthews 2001; Matthews and Preisler 2010). However, philopatry is not static. Studies have shown that the intensity of philopatry can vary among species and even individuals in a population (Smith and Green 2005; Semlitsch 2008). There may be a continuum of philopatric behavior from extremely philopatric to highly vagile (Semlitsch 2008). Site fidelity varies, not only by individual, but also by habitat type. High site fidelity has been linked with stable ponds in late successional stages, while low site fidelity is associated with new ponds in early successional stages (e.g., open canopy) (Semlitsch 2008).

Several studies have measured philopatry in *Rana sierrae* (Sierra Nevada Yellow-legged Frog, formerly called *Rana muscosa*). Populations of *R. sierrae* have been rapidly disappearing from lakes in protected forests of the high Sierra Nevada. The local extirpation of this species from several basins has been correlated with the introduction of non-native trout for recreational purposes (Knapp and Matthews 2000; Knapp et al. 2007). This species exhibits very high site fidelity, which is thought to be due to the tadpoles' reliance on water for two to four years before metamorphosing, and the short period of movement due to winter snow packs (Matthews and Preisler 2010).

Although herpetologists have long thought that oviposition site choice in frogs is restricted by high levels of site fidelity, new research is showing that amphibians are capable of moving greater distances and have larger home ranges than previously realized, and are able to recolonize areas that have been restored to high quality sites. Despite the small size of frogs and their need for moisture, radio telemetry studies have shown that frogs can travel several kilometers, even over land (Matthews and Pope 1999; Pope and Matthews 2001; Hayes et al. 2001; Bulger et al. 2003; Fellers and Kleeman 2007). Long term monitoring of these movements provides strong evidence for large home ranges that include multiple overwintering and breeding sites (Matthews and Pope 1999; Pope and Matthews 2001). Such movements suggest that amphibians are able to survey their habitats and take note of changes in their environment. Anecdotal evidence for this comes from an experiment in northwestern California in which canopy cover surrounding a pond was removed, and within a few years there was increase in numbers of *Ambystoma gracile* and *Rana aurora* that used the pond for breeding (Ryan Bourque, pers. comm.). Direct evidence for recolonization following

improvement in habitat quality comes from a nine year study on *Rana sierrae* (Knapp et al. 2007). Multiple studies have looked at various effects of the experimental removal of trout from roughly a dozen alpine lakes in two basins located in Kings Canyon National Park. In these studies there was a quick recolonization by *R. sierrae* in lakes previously occupied by fish (Knapp et al. 2001; Vredenburg 2004; Knapp et al. 2007). Such research supports the notion that though amphibians exhibit site fidelity, they are capable of long distance movements and may be selecting ponds based on habitat quality.

Before the preference-performance hypothesis can be tested on any particular species of amphibians, one must determine what constitutes a high quality oviposition site for that species. For my study, I investigated the oviposition habitat preferences of *Rana aurora* (Northern Red-legged Frog) in northern Humboldt County, California. I chose R. aurora for my subject species because it is a fairly common local species, although there are many areas throughout its range (northern California north to Vancouver, BC) where populations have been declining (Pearl 2005). Rana aurora is listed as a California Species of Special Concern because of habitat loss due to urban development (DFG 2006). Thus, determining what types of habitats that it prefers for oviposition could help in future conservation efforts for the species. Information about this species is limited, taken from individuals in the northern portion of the range, and/or extrapolated from its sister species, Rana draytonii, and thus more data are needed to better understand this species, especially in the southern portion of its range. *Rana aurora* are aquatic breeders that lay their eggs in a wide range of aquatic habitats including marshes, ponds, lakes and reservoirs (Stebbins 2003). Females exhibit no parental care and lay one egg mass per season with clutch sizes averaging 530-830 eggs/mass (Pearl 2005). Egg masses are located on emergent vegetation, in shallow waters with an average water depth between 50 and 100 cm (Storm 1960; Pearl 2005). The tadpoles hatch after 10-30 days of development, after which they rely on dense aquatic vegetation for a protective foraging area (Pearl 2005). Known predators of tadpoles and juveniles are various fish and amphibians (e.g., *Gambusia affinis*, Mosquitofish, and *Lithobates catesbeianus*, American Bullfrog) (Calef 1973; Gamradt and Kats 1996; Kiesecker and Blaustein 1997 1998; Goodsell and Kats 1999; Kiesecker et al. 1999, 2001; Lawler et al. 1999).

The objectives of my study were two-fold: (1) to determine what habitat characteristics predict oviposition site use by R. aurora, and (2) to elucidate what characteristics predict the density of egg masses at a pond. The second objective was included because density of egg masses can increase competition amongst offspring and thus impact survival of young. Water temperature was monitored since it can influence developmental rates. Colder temperatures decrease metabolic rates, which consequently impact growth rates of egg masses and tadpoles (Bachmann 1969). Slower growth rates lead to smaller individuals which increases the chance for predation (Bachmann 1969; Voss 1993). Another potentially influential characteristic is water depth because it can impact the survival of egg masses and tadpoles, as both these life stages require a minimum amount of water for survival (Duellman and Trueb 1994; Pearl 2005). Other habitat characteristics that could affect embryo survival include canopy cover, amount of emergent vegetation, presence or absence of other amphibians, and the presence or absence of fish. Canopy cover can impact water temperature by decreasing the amount of sunlight reaching the pond, and thereby influencing developmental rate and survival of embryos. Decreased canopy cover

leads to increased sunlight, which allows for more algal growth, a primary food source for tadpoles (Mallory and Richardson 2005). The amount of emergent vegetation also impacts survival because *R. aurora* females attach their egg masses to emergent vegetation in shallow waters (average water depth: 50-100 cm) (Storm 1960; Pearl 2005). Tadpoles also rely on vegetation as a protective foraging area, providing them cover from predators such as other amphibians and fish (Werschkul and Christensen 1977; Lawler et al. 1999; Pearl 2005).

By monitoring multiple ponds over the course of one breeding season, I assessed multiple habitat characteristics and conducted egg mass surveys to gain a better understanding of the correlation between pond habitat composition and oviposition for *R*. *aurora*. This study provides information that will allow for future research to determine if the breeding behavior in *R*. *aurora* operates under the preference-performance hypothesis. Results of this study will determine what pond characteristics will be indicators of a high quality site and, therefore, allow for increased offspring survival and parental fitness for a species in need of conservation.

MATERIALS AND METHODS

Study sites

My study was conducted during the winter of 2007-2008 (December-April) using 30 permanent (N=17) and temporary (N=13) ponds located in northern Humboldt County, California (Figure 1; Appendix A). Eleven ponds contained fish. Twenty of the ponds were natural; the rest were manmade. Pond area was measured by tracking the perimeter of the pond using a Garmin GPS Map 60 (Garmin Ltd. 2010). Ponds ranged in size from 7.5 to 6105 m^2 (mean = 926.8 m²) and elevation ranged from 5 m to around 500 m, with surrounding habitat varying from residential yards to dense redwood forests. Ponds were located on lands owned or protected by Humboldt Bay National Wildlife Refuge, Green Diamond Resource Company, City of Arcata, and private landowners. I selected ponds based on permission of landowners and accessibility.

Monitoring water temperature

Throughout the breeding season, water temperature was measured using HOBO[®] data loggers (Onset Computer Corporation, Bourne, MA), each deployed in a watertight container. I situated data loggers just below the water surface about 1 m from the northern shoreline to maintain consistency across ponds in regards to the amount of sunlight received throughout the day (Pearl 2005).

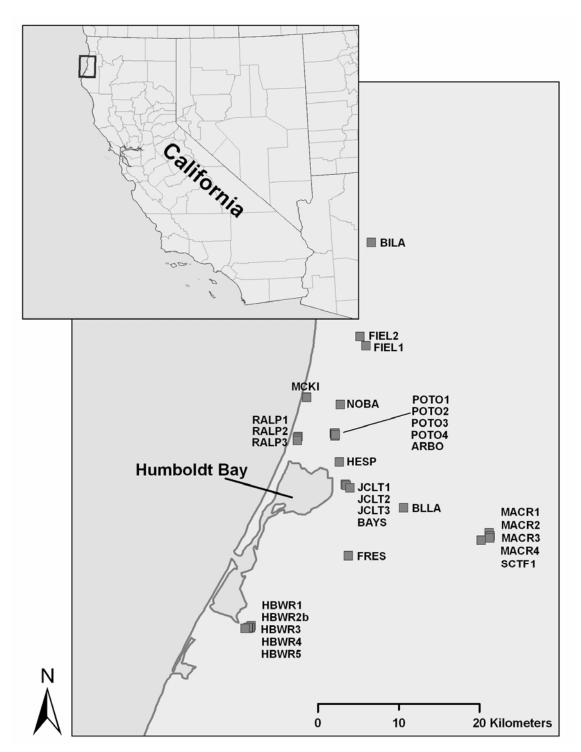


Figure 1. Map of study sites along the northern California coast in Humboldt County. Squares represent study ponds that are labeled with pond abbreviation names. (Courtesy of Judd Patterson.)

During the 2007-2008 breeding season I was only able to record water temperature at 22 of the 30 ponds due to an insufficient number of data loggers. Of those, data from nine loggers were unusable because all or a significant portion of the data were inaccurate, either because water levels dropped (thereby loggers measured air rather than water temperature) or batteries died between visits. To obtain water temperature data for all ponds, I installed loggers in all 30 ponds for 2-3 weeks in February 2009, which is the peak oviposition period for *R. aurora*. Egg masses were present during the same 2-3 week period in both 2008 and 2009. All ponds monitored in 2007-2008 showed similar daily mean temperatures throughout the season, with only a small increase during the warmer months (Appendix A). There was no significant difference between the two years (p=0.239) when daily mean water temperatures were compared between 2008 and 2009. Therefore, only 2009 daily mean water temperature data were used in further analyses.

Fish sampling

Sampling for fish occurred at the beginning (December 2007/January 2008) and end (April) of the *R. aurora* breeding season. Before egg masses were laid, I used seine nets for sampling shallower ponds (maximum depth < 3 m). I divided each pond into quadrants based on cardinal directions and randomly selected two of the four quadrants for seining. Minnow traps were used for sampling deeper or heavily vegetated ponds. Two to six baited (canned cat food) minnow traps were positioned in random areas of the pond and left out for three hours. The number of minnow traps used per pond was proportional to the size of the

pond, and the locations of traps were chosen by flipping a coin and using a grid system. After egg masses hatched, I sampled for fish using minnow traps baited with hot dogs (because cat food fell through holes in traps). Since minnow traps proved to be more effective than seine nets at capturing fish and were easier to deploy, they were the sole method used for sampling at the end of the breeding season.

Captured fish were temporarily stored (maximum 1 hour) in 5-gallon buckets that were filled with local pond water, and supplied with oxygen using battery-powered aerators. Fish were anesthetized prior to handling using CO_2 (one-quarter tablet Alka Seltzer® Gold per five gallons of water) and total length (TL) of each fish was measured (Page and Burr 1991). When over 200 fish were caught in a trap, I sub-sampled by measuring every fifth fish (of the same species) in order to minimize the time the fish remained outside of the pond. Handling of each fish took less than one minute. After handling, fish were placed in a recovery bucket filled with aerated local pond water and were released after a recovery period of at least five minutes. The minnow traps also captured various species of amphibians (including *R. aurora* adults and tadpoles). I recorded the number of each species caught per trap.

All handling protocols were approved by Humboldt State University's Institutional Care and Use Committee (Protocol # 07/08-B.33-A) and the California Department of Fish and Game (Scientific Collection Permit # SC-9794).

Egg mass surveys

All ponds, except those at Humboldt Bay National Wildlife Refuge, were visited weekly from 1 December 2007 to 10 April 2008, weather permitting. Ponds at the refuge were visited every two weeks in order to minimize the disturbance to waterfowl populations during the hunting season. If it was raining or the ponds were frozen, visits were postponed because rain reduces visibility, and breaking the ice would have drastically decreased the water temperature below the surface. There were only two surveys postponed due to ice and this only affected eight ponds. Visits postponed due to rain were frequent in January and February 2008, often occurring once or twice a week. But in other months, rain delays were sporadic, happening only four or five times a month, affecting only a few surveys instead of most.

During each survey I searched ponds for egg masses by carefully walking line transects through the pond. I flagged and numbered all egg masses, while also taking note of the presence of fish and other amphibians (of any life stage).

Determining pond vegetation and canopy cover

I determined the percent vegetation for each pond by first visually dividing the pond into quadrants, using cardinal directions, in order to obtain four values to average. For each quadrant, I estimated the percentage of the pond surface area that contained woody vegetation (stumps, logs, trees, etc.; WOOD), percent floating vegetation (FVEG), and percent emergent vegetation (EMVEG). I subtracted the sum of these three estimates from 100 to obtain percent of open water. Average percent emergent vegetation was chosen as a variable because *R. aurora* attaches its egg masses to emergent vegetation, although there are also some instances when extremely dense floating vegetation is used for oviposition (pers. obs.). Woody debris and open water were included as categories that represented areas where oviposition does not occur.

Average percent canopy cover was estimated using a spherical densiometer. Percent canopy cover is the proportion of an area (in this case, pond surface) shaded by the vertical projection of the tree canopy (Jennings et al. 1999). The number of canopy cover measurements made was proportional to the size of the pond. I took only one measurement for ponds smaller than 100 m², two measurements for ponds between 100 and 1000 m², and three measurements for ponds greater than 1000 m². Measurements were taken where the greatest density of egg masses appeared. If a pond did not contain any egg masses, then either the middle of the pond (if accessible) or an area that was most representative of the surrounding habitat was selected.

Statistical analysis

All statistical tests were conducted using the statistical package R (R Development Core Team 2010). To assess if any habitat characteristics differed between occupied and unoccupied ponds, I used binary multiple regression to test for significant relationships between the presence/absence of egg masses and the following explanatory variables: average percent emergent vegetation, sum of percent emergent vegetation and floating vegetation, average percent woody vegetation, average daily water temperature, average percent canopy cover, presence/absence of other amphibians, and presence/absence of fish (Table 1). Pearson's correlations were used to determine relationships between variables.

To determine habitat characteristics that impacted the density of egg masses per pond, I first transformed the total number of egg masses using the natural log in order to meet assumptions of normality. For this analysis, only ponds with at least one egg mass were included (N=24). I used *a priori* model selection and inference. *A priori* model selection is a contemporary statistical tool that is similar, in nature, to ANOVA and multiple linear regression (MLR) (Burnham and Anderson 2002). It allowed me to compare models based on weights calculated from corrected Akaike Information Criterion (AIC_c) values. The best fitting model is the one with the lowest AIC_c and fewest variables. The area of a pond impacted the total number of egg masses, so it was included in all models. Having area in

Table 1. List of predictor variables used in analysis.

Average water depth	WD
Average percent emergent vegetation	EMVEG
Sum of percent emergent vegetation and floating vegetation	EMFVEG
Average percent woody vegetation (e.g., logs)	WOOD
Average daily water temperature (2-3 wks 2009) (°C)	TEMP
Average percent canopy cover	CC
Presence/absence of other amphibians (any life stage)	AMPHI
Presence/absence of fish	FISH

Objective 1: Predicting presence or absence of egg masses at a pond (N = 30).

Objective 2: Habitat characteristics	potentially impacting the density of egg masses (N	N = 24).

Pond Area (m ²)	AREA
Sum of EMVEG and FVEG	EMFVEG
Average water depth	WD
Average daily water temperature (2-3 wks 2009)	TEMP
Average percent canopy cover	CC

each model and the response variable as the natural log of the total number of egg masses allows the habitat variables to be assessed in terms of density (Table 2). Density could not be used as a response variable because normalizing density (taking the natural log) produces negative values, because density is expressed as a decimal. Models 1, 2, 3, and 4 include the individual variables plus pond area. Models 5, 6, 7, and 8 include interaction terms that could impact numbers of egg masses. I also chose models to minimize the effect of potentially confounding factors, such as canopy cover and water temperature.

Table 2. *A priori* models with the response variable as the natural log of the total number of egg masses. (see Table 1 for explanation of variables)

Model	Covariates
1	EMFVEG + AREA
2	CC + AREA
3	TEMP + AREA
4	WD + AREA
5	EMFVEG + CC + AREA
6	TEMP + EMFVEG + AREA
7	EMFVEG + CC + WD + AREA
8	EMFVEG + CC + TEMP + WD + AREA

-

RESULTS

Egg mass surveys

Egg masses were found in 24 of the 30 ponds, with individual ponds containing from 0 to 526 masses (mean=85) (Appendix B). The mean density was 0.1 egg masses/m² (\pm 0.2) for all ponds, and 0.2 egg masses/m² (\pm 0.2) for those ponds that contained at least one egg mass. Eight of the 30 ponds had densities greater than 0.2 egg masses/m², with the highest at ponds MACR2 (0.661/m²), NOBA (0.551/m²), and BAYS (0.532/m²) (Appendix B).

Previous studies state that *R. aurora* attach their egg masses to emergent vegetation (Pearl 2005), however, during my study I observed *R. aurora* regularly attaching egg masses to floating vegetation. Though I did not record the specific types of vegetation used, the common emergent vegetation included cattails (*Typha spp.*), Tule (*Scirpus acutus*) and horticulture plants. The two most common floating plants (excluding Duckweed, which is not dense enough to hold an egg mass) were Parrot Feather (*Myriophyllum aquaticum*) and Hydrocotyle (*Centella asiatica*). Both of these create dense floating mats, thereby increasing the number of oviposition sites and shelter for tadpoles. However, there are trade offs as some of these plants are invasive and can take over a pond (Ruiz-Avila and Klemm 1996).

I observed the presence of a water-mold (*Saprolegnia* sp.) on several egg masses in pond POTO 1. *Saprolegnia* is transferred from fish and may lethally attack amphibian egg masses (Kiesecker *et al.* 2001, pers. obs.); it has infected *Pseudacris regilla* and *R. aurora* egg masses at other locations in Humboldt County (Jamie Bettaso, pers. comm.). Photographs of infected egg masses were sent to a local biologist (Jamie Bettaso) who conjectured that the water mold was *Saprolegnia* by the general effects this genus has on egg masses. Infected egg masses had embryos that were clumped together in the center of the mass with multiple embryos turned gray or white. In several cases, only the center of the egg mass was infected and I observed that the uninfected regions were still able to develop and hatch as tadpoles. I did not follow the tadpoles to determine their survival, but embryonic survival for infected egg masses varied from 50-80% (pers. obs.).

Predicting the presence/absence of egg masses

The only variable that showed a significant relationship with the presence or absence of egg masses was average percent canopy cover (Table 3). Egg mass presence was more probable in ponds that had low average percent canopy cover (p<0.000; adj $R^2=84.4$) (Figure

2).

	Estimate of	Standard		
Variable	Coefficient	Error	T-value	P value
WD	0.0008	0.0022	0.351	0.729
EMVEG	-0.0012	0.0024	-0.513	0.613
EMFVEG	-0.0005	0.0021	-0.238	0.814
WOOD	0.0019	0.0045	0.436	0.667
TEMP	-0.0495	0.0447	-1.108	0.281
CC	-0.0126	0.0016	-8.119	0.000
AMPHI	-0.0931	0.0697	-1.336	0.196
FISH	0.1135	0.0720	1.577	0.130

Table 3. Results from binary multiple regressions using presence/absence of an egg mass as the response variable. Adjusted R^2 : 84.29

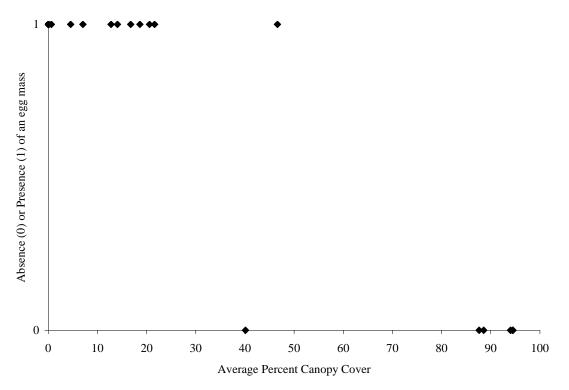


Figure 2. The relationship between egg mass presence/absence and canopy cover (N=29 ponds).

Water temperature did not vary significantly (p=0.281) between ponds with egg masses (mean = $8.37 \,^{\circ}$ C, std = 0.68) and those without them (mean = $8.98 \,^{\circ}$ C, std = 0.82) during the 2-3 week peak period of oviposition measured in 2009 (Figure 3). There was no relationship (p=0.196) between presence of egg masses and the presence or absence of other amphibians (AMPHI) (Table 3), nor was presence of *R. aurora* affected by the presence/absence of fish (p=1.000).

Impacts on egg mass density per pond

The best-fitting model for explaining the number of egg masses per pond was EMFVEG + AREA (AIC_c = 86.501, w_i = 54.7%, Table 4). The ln-transformed number of egg masses increased with both EMFVEG and pond area (adj R² =48.2, P=0.0187, Figure 4). The weight of the best-fitting model indicates a 54.7% probability that the model represents the true information from the data, assuming the best-fitting model can be found among the candidate models (Burnham and Anderson 2002). Due to this high probability, no model averaging was conducted.

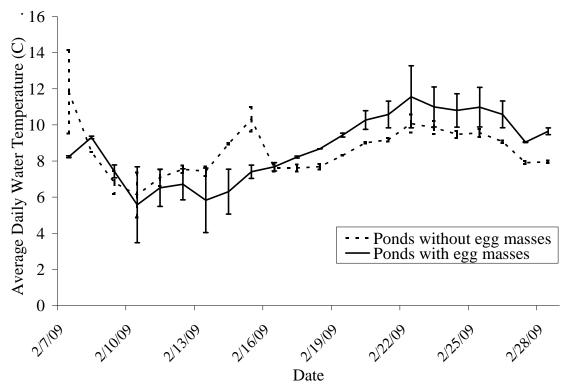


Figure 3. Temperature (°C) variation (measured in 2009) in ponds with and without egg masses. Egg mass presence was assessed in 2008.

Table 4. *A priori* models with the response variable as the natural log of the total number of egg masses.

	Residual Standard						
Covariates	Error	adj R ²	P-value	DF	AIC _C ^a	Likelihoods	$w_i^{\ b}$
EMFVEG+AREA	1.270	0.417	0.001	21	86.501	1.000	0.547
EMFVEG+CC+AREA	1.278	0.410	0.004	20	88.858	0.308	0.168
EMFVEG+TEMP+AREA	1.294	0.395	0.007	20	89.455	0.228	0.125
EMFVEG+CC+WD+AREA	1.282	0.407	0.007	19	91.359	0.088	0.048
WD+AREA	1.425	0.267	0.015	21	92.002	0.064	0.035
CC+AREA	1.426	0.266	0.015	21	92.042	0.063	0.034
TEMP+AREA	1.426	0.266	0.015	21	92.057	0.062	0.034
EMFVEG+WD+CC+TEMP+AREA	1.301	0.389	0.014	18	94.834	0.016	0.008

^aCorrected Akaike Information Criterion

^bAkaike Weights

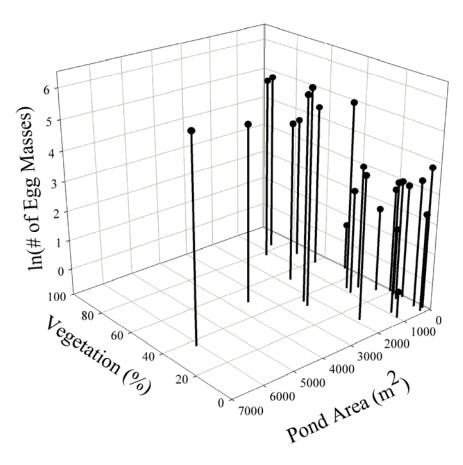


Figure 4. Three dimensional graph of the natural log of the total number of egg masses and the percent of emergent/floating vegetation and pond area (m²).

Other observations

Fish were found in 11 of the 30 ponds, with a total of seven species observed or caught in minnow traps (Appendix C). Goldfish (*Carassius auratus*), Koi (*Cyprinus carpio*), and Mosquitofish (*Gambusia affinis*) were more common in residential ponds than elsewhere. Three-spine Stickleback (*Gasteroulus aculeatus*) was the most abundant and widespread overall, being found in seven of the 11 ponds containing fish. The abundance of fish captured per pond varied immensely. In JCLT2, only one Mosquitofish was caught out of two minnow traps, but in RALP3 pond, three minnow traps caught a total of 892 Stickleback.

Most study ponds contained at least one other species of amphibian (Appendix C). These were Coastal Giant Salamander (paedomorph) (*Dicamptodon tenebrosus*), Pacific Chorus Frog (*Pseudacris regilla*), Rough-skinned Newt (adults only) (*Taricha granulosa*), and Northwestern Salamander (*Ambystoma gracile*). Though I did not record exact numbers, I did note the general abundance of *A. gracile* egg masses at each pond and categorized them accordingly: 0=0 egg masses, 1=1-5 egg masses, 2=5-10 egg masses, 3=greater than 10 egg masses. *Ambystoma gracile* oviposited more often in ponds with deeper water (p < 0.001) and higher canopy cover (p = 0.007). There was no relationship between the relative number of *A. gracile* egg masses and the total number of *R. aurora* egg masses (p=0.850) but there was a marginally significant negative relationship between the relative number of *A. gracile* egg masses and the presence/absence of *R. aurora* egg masses (p=0.057).

DISCUSSION

Oviposition site selection has been shown to affect offspring survival in numerous species of insects, birds, reptiles, and amphibians (Kolbe and Janzen 2001; Mezquida 2004; Garcia-Gonzalez and Gomendio 2003; Reiger et al. 2004; MacCracken 2007). Before the impact of oviposition preference on offspring performance can be measured in *Rana aurora*, one must first determine what habitat characteristics females prefer for oviposition. Various studies have shown the influence of one or more of the following factors on pond choice for oviposition: presence of predators, amount of vegetation cover, water temperature, amount of UV-B radiation, substrate type, hydrology (i.e., desiccation risk), pH, amount of food available for offspring, and density or presence of conspecifics (Crump 1991; Sadinski and Dunson 1992; Duellman and Trueb 1994; Moore and Townsend 1998; Dillon and Fiaño 2000; Halloy and Fiaño 2000; Orizaola and Brana 2003; Palen et al. 2005; Waltson and Mullin 2007). My study examined what habitat characteristics might influence a female *Rana aurora* in her choice of pond for oviposition.

Predicting presence/absence of egg masses

Percent canopy cover was negatively related to the presence of egg masses. Increased canopy cover reduces light levels, which can potentially decrease water temperature and vegetation growth. There was no evidence that water temperature was correlated with presence or absence of egg masses, though I did not measure water temperature for all ponds for the entire period of oviposition. A recent study showed a link between increased canopy cover and decreased survival of *Ascaphus truei* (Pacific Tailed Frog) tadpoles due to a reduction in the density of algae, the tadpoles' food source (Mallory and Richardson 2005). The study demonstrated that high artificial canopy cover decreased the amount of sunlight hitting ponds, causing less algae to grow. The higher number of egg masses oviposited in ponds with decreased canopy cover may represent an assessment by females of increased food availability for tadpoles. It is possible that percent canopy cover may influence water temperatures beyond the period of my temperature measurements. Cold temperatures slow embryonic development, leading to smaller individuals more susceptible to predation (reviewed by Bachmann 1969; Voss 1993; Duellman and Trueb 1994) or perhaps pond drying. Both of these possible effects of canopy cover (algal productivity, temperature) suggest that when females select a pond for oviposition, they not only select habitat characteristics to increase embryonic survival, but also tadpole survival.

Many species of amphibians, including *Rana aurora*, have shown a preference for oviposition sites that lack fish (Kats and Sih 1992; Hopey and Petranka 1994; Pope and Matthews 2001; Blaustein et al. 2004; Egan and Paton 2004; Hazell et al. 2004; Reiger et al. 2004; MacCracken 2007; Waltson and Mullin 2007). Fish are predators of adults and tadpoles, and some fish species eat egg masses as well (Kiesecker and Blaustein 1998; Lawler et al. 1999; Monello and Wright 2001). In one study, *Lithobates sylvaticus* (formerly *Rana sylvatica*; Wood Frog) and *Ambystoma maculatum* (Spotted Salamander) both oviposited more frequently in ponds with lower numbers of fish (Egan and Paton 2004). My finding that presence of fish correlated with the presence egg masses was unexpected. However, this result was most likely based on the locally-specific low risk of predation. The fish caught in the study ponds were mainly Three-spine Stickleback and Mosquitofish, both of which have body lengths less than the body size of adult *R. aurora* (Moyle 2002). Small body length is associated with a small gape size, which places a limitation on prey size (Moyle 2002). FIEL 2, MCKI, and BAYS were the only ponds that had fish large enough to eat tadpoles (Appendix C). Of these three ponds, *R. aurora* egg masses were only sighted at BAYS pond. The absence of egg masses at the other two ponds cannot be definitively attributed to the presence of fish, however, because these ponds also had high levels of canopy cover, which has shown to be negatively correlated with presence of egg masses.

Many studies have shown that the presence of other amphibians, or even conspecifics, can influence oviposition site preference in frogs (Crump 1991; Dillon and Fiaño 2000; Halloy and Fiaño 2000; Matsushima and Kawata 2005). My results showed that the presence/absence of *Rana aurora* egg masses was not correlated with the presence/absence of *Ambystoma gracile* adults or egg masses, or presence/absence of other amphibians. However, my data suggest that *A. gracile* egg masses are found more often in ponds with deeper waters (p < 0.001) and higher percent canopy cover (p = 0.007) than those used by *Rana aurora*. These two species also frequently share the same ponds for oviposition, and both attach their egg masses to emergent vegetation, but *A. gracile* egg masses are found below the surface and *R. aurora* egg masses float near the surface (Pearl 2005; Shaffer 2005; pers. obs.).

This study did not reveal a relationship between the presence/absence of *Rana aurora* egg masses and pond temperature during the peak of oviposition (Figure 3). This result contrasts with studies on other frog species showing temperature influences oviposition site

selection. The lack of a temperature effect in my study appears attributable to modest variation in temperature among ponds, and the fact that all ponds achieved the minimum temperature for *R. aurora* oviposition of 6 °C (Pearl 2005) (Appendix A). However, more complete temperature records covering the entire developmental period might yield a different conclusion about the influence of temperature on site selection.

Impacts on egg mass density per pond

The density of egg masses was influenced by average percent emergent and floating vegetation and pond area. The amount of aquatic vegetation has been shown to impact oviposition site preference in other amphibian species. For example, in a study monitoring four species of pond-breeding amphibians, all species laid more egg masses in ponds with higher levels of vegetation (Hazell et al. 2004). Since *R. aurora* attach their egg masses to emergent vegetation, ponds with greater amounts of vegetation can hold more egg masses. The preference for high amounts of emergent and floating vegetation suggests that female *R. aurora* might select oviposition sites that increase survival probability for embryos and tadpoles. A secure, permanent position for embryonic development increases chances for survival (Licht 1974; Kiesecker and Blaustein 1998; Pearl 2005). Once the embryos hatch, tadpoles rely on vegetation for shelter from predators.

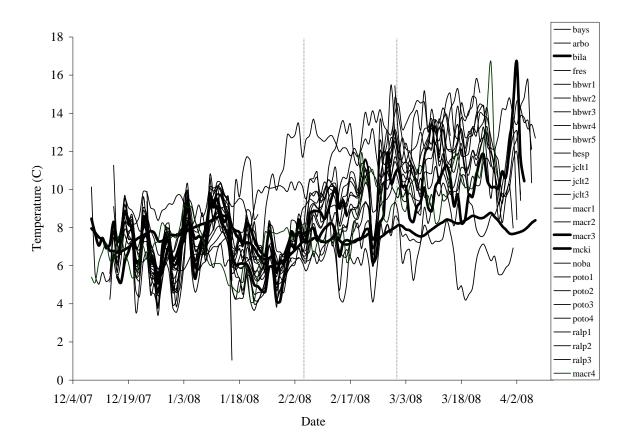
Conclusion

My study demonstrates that *Rana aurora* prefer to oviposit in ponds with low levels of canopy cover and that a greater density of egg masses is associated with ponds with higher percentages of emergent and floating vegetation. Lower canopy cover levels have been shown (in other studies) to increase food for tadpoles and increased levels of vegetation provide more oviposition sites and shelter for tadpoles. These results show that females are choosing oviposition sites with specific habitat characteristics, those which provide the necessary elements for high embryonic survival, which, in turn, affects tadpole survival. The next step in this research is to determine if these characteristics affect offspring performance. If they do influence offspring performance, then the preference-performance hypothesis can be applied to *Rana aurora*.

LITERATURE CITED

- Bachmann, K. 1969. Temperature adaptations of amphibian embryos. American Naturalist 103: 115-130.
- Blaustein, A. R., and D. B. Wake. 1990. Declining amphibian populations: a global phenomenon? Trends in Ecology and Evolution 5: 203–204.
- Blaustein, L., M. Kiflawi, A. Eitam, M. Mangel, and J. E. Cohen. 2004. Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia 138: 300-305.
- Bulger, J. B., N. J. Scott Jr., and R. B. Seymour. 2003. Terrestrial activity and conservation of adult California red-legged frogs *Rana aurora draytonii* in coastal forests and grasslands. Biological Conservation 110: 85-95.
- Burnham, K. P., and D. Anderson. 2002. Model Selection and Multi-model Inference. New York: Springer-Science.
- Calef, G. W. 1973. Natural mortality of tadpoles in a population of *Rana aurora*. Ecology 54: 741-758.
- Chivers, D. P., J. M. Kiesecker, A. Marco, J. DeVito, M. T. Anderson, and A. R. Blaustein. 2001. Predator-induced life history changes in amphibians: egg predation induces hatching. Oikos 92: 135-142.
- Crump, M. L. 1991. Choice of oviposition site and egg load assessment by a treefrog. Herpetologica 47: 308-315.
- Department of Fish and Game. 2006. Special Animals. Sacramento, California: 59 pp.
- Dillon, M. E., and J. Fiaño. 2000. Oviposition site selection by the tungara frog (*Physalaemus pustulosus*). Copeia 2000: 883-885.
- Duellman, W. E., and L. Trueb. 1994. Biology of Amphibians. Baltimore: The John Hopkins University Press.
- Egan, R. S., and P. W. C. Paton. 2004. Within-pond parameters affecting oviposition by Wood Frogs and Spotted Salamanders. Wetlands 24: 1-13.

- Fellers, G. M., and P. M. Kleeman. 2007. California Red-legged Frog (*Rana draytonii*) movement and habitat use: Implications for conservation. Journal of Herpetology 41: 276-286.
- Gamradt, S. C., and L. B. Kats. 1996. Effect of introduced crayfish and mosquitofish on California newts. Conservation Biology 10: 1155-1162.
- Garcia-Gonzalez, F., and M. Gomendio. 2003. Oviposition site selection and oviposition stimulation by conspecifics in the golden egg bug (*Phyllomopha laciniata*): implications for female fitness. Behavioral Ecology and Sociobiology 53: 385-392.
- Goodsell, J. A., and L. B. Kats. 1999. Effect of introduced mosquitofish on Pacific Treefrogs and the role of alternative prey. Conservation Biology 13: 921-924.
- Halloy, M., and J. M. Fiaño. 2000 Oviposition site selection in *Pleurodema borellii* (Anura: Leptodactylidae) may be influenced by tadpole presence. Copeia 2000: 606-609.
- Hayes, M. P., C. J. Pearl, and C. J. Rombough. 2001. *Rana aurora aurora* (Northern Red-legged Frog) movement. Herpetological Review 32: 35-36.
- Hazell, D., J. Hero, D. Lindenmayer, and R. Cunningham. 2004. A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape. Biological Conservation 119: 61-71.
- Hopey, M. E., and J. W. Petranka. 1994. Restriction of Wood frogs to fish-free habitats: how important is adult choice? Copeia 1994: 1023-1035.
- Jaenike, J. 1978. On optimal oviposition behaviour in phytophagous insects. Theoretical Population Biology 14: 350-356.
- Jennings, S. B., N. D. Brown, and D. Sheil. 1999. Assessing forest canopies and understory illumination: canopy closure, canopy cover and other measures. Forestry 72: 59-73.
- Johnson, J. B., D. Saenz, C. K. Adams, and R. N. Conner. 2003. The influence of predator threat on the timing of a life-history switch point: predator induced hatching in the southern leopard frog (*Rana sphenocephala*). Canadian Journal of Zoology 81: 1608-1613.
- Johnson, S. N., A. Nicholas, E. Birch, P. J. Gregory, and P. J. Murray. 2006. The 'mother knows best' principle: should soil insects be included in the preferenceperformance debate? Ecological Entomology 31: 395-401.


- Kaplan, R. H. 1998. Maternal effects, developmental plasticity, and life history evolution: an amphibian model. Pp. 67-69 in Mousseau, T. A., and C. W. Fox (eds.), Maternal Effects as Adaptations. New York: Oxford University Press.
- Kats, L. B., and A. Sih. 1992. Oviposition site selection and avoidance of fish by streamside salamanders (*Ambystoma barbouri*). Copeia 1992: 468-473.
- Kiesecker, J. M., and A. R. Blaustein. 1997. Population differences in responses of Redlegged Frogs (*Rana aurora*) to introduced bullfrogs. Ecology 78: 1752-1760.
- Kiesecker, J. M., and, A. R. Blaustein. 1998. Effects of introduced bullfrogs and smallmouth bass on microhabitat use, growth, and survival of native Red-legged Frogs (*Rana aurora*). Conservation Biology 12: 776-787.
- Kiesecker, J. M., D. P. Chivers, A. Marco, C. Quilchanos, M. T. Anderson, and A. R. Blaustein. 1999. Identification of a disturbance signal in larval red-legged frogs, *Rana aurora*. Animal Behaviour 57: 1295-1300.
- Kiesecker, J. M., A. R. Blaustein, and C. L. Miller. 2001. Transfer of a pathogen from fish to amphibians. Conservation Biology 15: 1064-1070.
- Knapp, R. A., and K. R. Matthews. 2000. Non-native fish introductions and the decline of the Mountain Yellow-Legged Frog from within protected areas. Conservation Biology 14: 428-438.
- Knapp, R. A., D. M. Boiano, and V. T. Vredenburg. 2007. Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, *Rana muscosa*). Biological Conservation 135: 11-20.
- Kolbe, J. J., and F. J. Janzen. 2001. The influence of propagule size and maternal nest-site selection on survival and behavior of neonate turtles. Functional Ecology 15: 772-781.
- Kolbe, J. J., and F. J. Janzen. 2002. Impact of nest-site selection on nest success and nest temperature in natural and disturbed habitats. Ecology 83: 269-281.
- Lawler, S. P., D. Dritz, T. Strange, and M. Holyoak. 1999. Effects of introduced mosquitofish and bullfrogs on the threatened California Red-legged frog. Conservation Biology 13: 613-622.
- Licht, L.E. 1974. Survival of embryos, tadpoles, and adults of the frogs *Rana aurora aurora* and *Rana pretiosa pretiosa* sympatric in southwestern British Columbia. Canadian Journal of Zoology 52: 613-627.

- Lloyd, J. D., and T. E. Martin. 2004. Nest-site preference and maternal effects on offspring growth. Behavioral Ecology 15: 816-823.
- MacCracken, J. G. 2007. Northwestern Salamander (*Ambystoma gracile*) oviposition sites and hatching success in the cascade mountains of Southern Washington. Herpetological Conservation and Biology 2: 127-134.
- Mallory, M. A., and J. S. Richardson. 2005. Complex interactions of light, nutrients, and consumer density in a stream periphton-grazer (tailed frog tadpoles) system. Journal of Animal Ecology 74: 1020-1028.
- Matsushima, N., and M. Kawata. 2005. The choice of oviposition site and the effects of density and oviposition timing on survivorship in *Rana japonica*. Ecological Research 20: 81-86.
- Matthews, K. R., and K. L. Pope. 1999. A telemetric study of the movement patterns and habitat use of *Rana muscosa*, the Mountain Yellow-legged Frog, in a high-elevation basin in Kings Canyon National Park, California. Journal of Herpetology 33: 615-624.
- Matthews, K. R., and H. K. Preisler. 2010. Site fidelity of the declining amphibian *Rana sierrae* (Sierra Nevada yellow-legged frog). Canadian Journal of Fisheries and Aquatic Sciences 67: 243-255.
- Mezquida, E. T. 2004. Nest site selection and nesting success of five species of passerines in a South American open *Prosopis* woodland. Journal of Ornithology 145: 16-22.
- Monello, R. J., and R. G. Wright. 2001. Predation by goldfish (*Carassius auratus*) on eggs and larvae of the Eastern long-toed salamander (*Ambystoma macrodactylum columbianum*). Journal of Herpetology 35: 350-353.
- Moore, K. M., and V. R. Townsend, Jr. 1998. The interaction of temperature, dissolved oxygen and predation pressure in an aquatic predator-prey system. Oikos 81: 329-336.
- Moyle, P.B. 2002. Inland Fishes of California. London: University of California Press, Ltd.
- Orizaola, G., and F. Brana. 2003. Oviposition behaviour and vulnerability of eggs to predation in four newt species (genus *Triturus*). Herpetological Journal 13: 121-124.
- Page, L. M., and B. M. Burr. 1991. A Field Guide to Freshwater Fishes: North America North of Mexico. The Peterson Field Guide Series, volume 42. Houghton Mifflin Company, Boston, MA.

- Palen, W. J., C. E. Williamson, A. A. Clauser, and D. E. Schindler. 2005. Impact of UV-B exposure on amphibian embryos: linking species physiology and oviposition behaviour. Proceedings of the Royal Society B 272: 1227-1234.
- Pearl, C. A. 2005. *Rana aurora* (Baird and Girard, 1852[b]) Northern red-legged frog. Pp. 528-520 in Lannoo, M. (ed.), Amphibian Declines: the Conservation Status of United States Species. Berkeley: University of California Press.
- Pope, K. L., and K. R. Matthews. 2001. Movement ecology and seasonal distribution of Mountain Yellow-Legged Frogs, *Rana muscosa*, in a high-elevation Sierra Nevada basin. Copeia 2001: 787-793.
- R Development Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria.
- Reiger, J. F., C. A. Binckley, and W. J. Resetarits Jr. 2004. Larval performance and oviposition site preference along a predation gradient. Ecology 85: 2094-2099.
- Resetarits Jr., W. R. 1996. Oviposition site choice and life history evolution. American Zoologist 36: 205-215.
- Ruiz-Avila, R. J., and V. V. Klemm. 1996. Management of *Hydrocotyle ranunculoides* L.f., an aquatic invasive weed of urban waterways in Western Australia. Hydrobiologia 340: 187-190.
- Sadinski, W. J., and W. A. Dunson. 1992. A multilevel study of effects of low ph on amphibians of temporary ponds. Journal of Herpetology 26: 413-422.
- Semlitsch, R. D. 2008. Differentiating migration and dispersal processes for pond-breeding amphibians. Journal of Wildlife Management 72: 260-267.
- Shaffer, B. 2005. Ambystoma gracile (Baird 1859) Northwestern Salamander. Pp. 609-611 in Lannoo, M. (ed.), Amphibian Declines: the Conservation Status of United States Species. Berkeley: University of California Press.
- Smith, M. A., and D. M. Green. 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28: 110-128.
- Stebbins, R. C. 2003. A Field Guide to Western Reptiles and Amphibians. New York, Houghton Mifflin Company.

- Storm, R. M. 1960. Notes on the breeding biology of the Red-legged Frog (*Rana aurora aurora*). Herpetologica 16: 251-259.
- Thompson, J. N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomologia Experimentalis et Applicata 47: 3-14.
- Voss, S. R. 1993. Effect of temperature on body size, developmental stage, and timing of hatching in *Ambystoma maculatum*. Journal of Herpetology 27: 329-333.
- Vredenburg, V. T. 2004. Reversing introduced species effects: experimental removal of introduced fish leads to rapid recovery of a declining frog. Proceedings of the Natural Academy of Sciences 101: 7646-7650.
- Waltson, L. J., and S. J. Mullin. 2007. Responses of a pond-breeding amphibian community to the experimental removal of predatory fish. American Midland Naturalist 157: 63-73.
- Werschkul, D. F., and M. T. Christensen. 1977. Differential predation by *Lepomis* macrochirus on the eggs and tadpoles of *Rana*. Herpetologica 33: 237-241.

Appendix A: Graph of water temperature from 24 of the 30 ponds during the 2007-2008 breeding season. The bolded lines represent those ponds with greater than 40% canopy cover. Vertical, dashed lines represent the 2-3 weeks in February that correspond to water temperature measurements taken in 2009.

Appendix	Appendix b: background intol	rmanon ar	ig raw gata	IOT STAILS	sucal analy	Iormation and raw data for statistical analysis for the 50 ponds	onds.		
									Avg
									Water Depth
Pond	Location	UTM E	UTM N	Natural	Hydrology	Habitat	Elevation (m)	Area (m ²)	(cm)
ARBO	Arcata, CA	408558	4527442	ou	permanent	residential	6	28.3	64.17
BAYS	Bayside, CA	409843	4521466	ou	permanent	residential	2	26.3	32.63
BILA	Big Lagoon	413033	4551501	yes	permanent	cleared forest	240	563.4	66.03
BLLA	Blue Lake, CA	417077	4518589	yes	permanent	forest	350	308.7	39.73
FIEL1	Fieldbrook, CA	412499	4538534	yes	permanent	forest	75	400.0	60.20
FIEL2	Fieldbrook, CA	411655	4539841	yes	permanent	forest	29	631.0	43.57
FRES	Freshwater, CA	410220	4512611	ou	permanent	cleared forest	30	913.0	64.00
HBWR1	Loleta, CA	398162	4503868	yes	seasonal	open field	-3	1008.9	35.17
HBWR2	Loleta, CA	398071	4503623	yes	seasonal	open field	-1	6105.4	45.40
HBWR3	Loleta, CA	397809	4503558	ou	seasonal	open field	-2	849.8	38.60
HBWR4	Loleta, CA	397792	4503685	ou	seasonal	open field	-3	2336.0	28.37
HBWR5	Loleta, CA	397424	4503525	yes	seasonal	open field	-4	256.0	23.30
HESP	Arcata, CA	409096	4524227	ou	seasonal	residential	9	3537.0	29.27
JCLT1	Bayside, CA	409946	4521344	yes	seasonal	residential	5	92.9	18.70
JCLT2	Bayside, CA	409970	4521333	yes	seasonal	residential	9	293.0	23.17
JCLT3	Bayside, CA	410392	4521005	ou	permanent	open field	8	2426.6	58.46
MACR1	Maple Creek, CA	427661	4515097	ou	permanent	cleared forest	440	1732.1	54.03
MACR2	Maple Creek, CA	427681	4515469	ou	seasonal	cleared forest	445	69.69	17.47
MACR3	Maple Creek, CA	427797	4515079	yes	seasonal	forest	442	94.5	18.73
MACR4	Maple Creek, CA	427759	4514827	ou	permanent	cleared forest	425	258.6	31.73
MCKI	McKinnleyville, CA	405061	4532232	no	permanent	residential	9	7.5	41.33
NOBA	McKinnleyville, CA	409219	4531336	ou	permanent	cleared forest	45	34.5	33.77
POT01	Arcata, CA	408484	4527786	ou	permanent	open field	7	1203.8	35.80
POT02	Arcata, CA	408568	4527744	no	seasonal	open field	5	451.0	24.50
POT03	Arcata, CA	408565	4527818	no	permanent	open field	9	188.4	19.77
POT04	Arcata, CA	408593	4527598	ou	seasonal	open field	3	434.8	50.52
RALP1	North Spit (Arcata, CA)	403956	4527352	ou	permanent	open field	-3	1867.3	10.27
RALP2	North Spit (Arcata, CA)	403871	4527171	no	permanent	open field	-3	660.9	43.83
RALP3	North Spit (Arcata, CA)	403878	4526914	no	seasonal	open field	-2	950.3	29.23
SCTF1	Maple Creek, CA	426676	4514554	yes	seasonal	forest	220	74.6	20.87

Appendix B: Background information and raw data for statistical analysis for the 30 ponds.

Appendix 1	D. Dack		IIUIIIauu	i allu lav	v uala I(JI STALISTICAL	ו כוכעומוום	Appendix D. Darkground Information and taw data for statistical analysis for the 30 points.	.eni		
						Daily Avg		Presence/		Total #	Density of
	Avg %	Avg %	Avg %	Avg %	Avg %	Water Temp	% Canopy	absence other	Presence/	R. aurora	egg masses/
Pond	EMVEG	FVEG	EMFVEG	WOOD	${ m H_20}$	(°C)	Cover	amphibians	absence fish	egg masses	puod
ARBO	11.5	35.3	46.8	0.0	53.3	8.06	0.00	yes	yes	2	0.071
BAYS	16.8	4.0	20.8	0.0	79.3	9.11	14.06	yes	yes	14	0.532
BILA	31.3	0.0	31.3	12.5	56.3	7.71	46.61	yes	ou	27	0.048
BLLA	11.3	0.0	11.3	42.5	46.3	90.6	87.63	yes	ou	0	0.000
FIEL1	1.3	0.0	1.3	2.8	96.0	7.74	94.41	yes	ou	0	0.000
FIEL2	21.3	0.0	21.3	21.3	57.5	8.13	88.56	yes	yes	0	0.000
FRES	7.5	0.5	8.0	0.0	92.0	68.T	20.58	yes	ou	32	0.035
HBWR1	3.8	0.0	3.8	0.0	96.3	9.15	0.00	ou	yes	1	0.001
HBWR2	36.3	0.0	36.3	0.0	61.3	9.82	00.0	yes	ou	351	0.057
HBWR3	33.8	0.0	33.8	0.0	66.3	8.93	0.13	yes	ou	223	0.262
HBWR4	36.3	0.0	36.3	0.0	63.8	8.48	0.00	yes	ou	389	0.167
HBWR5	14.5	0.0	14.5	0.0	85.5	9.81	0.00	ou	ou	23	0.090
HESP	50.0	0.0	50.0	1.8	48.3	9.68	0.00	yes	yes	157	0.044
JCLT1	18.0	0.0	18.0	0.0	78.0	9.04	0.00	yes	ou	4	0.043
JCLT2	25.0	0.0	25.0	0.0	73.8	9.41	0.00	yes	yes	7	0.024
JCLT3	32.8	0.0	32.8	6.3	61.0	9.98	0.00	yes	no	526	0.217
MACR1	20.0	33.8	53.8	0.0	50.0	69.6	16.75	yes	ou	91	0.053
MACR2	2.8	0.0	2.8	0.0	97.3	9.83	21.61	yes	ou	46	0.661
MACR3	0.0	0.0	0.0	2.0	98.0	8.49	94.53	yes	no	0	0.000
MACR4	0.8	0.8	1.5	0.3	98.3	8.86	18.62	yes	no	11	0.043
MCKI	12.5	0.5	13.0	0.0	87.0	9.24	40.10	ou	yes	0	0.000
NOBA	14.0	0.0	14.0	0.0	86.0	7.59	12.76	yes	ou	19	0.551
POT01	77.5	0.0	77.5	0.0	22.5	7.60	0.00	ou	ou	199	0.165
POT02	70.0	0.0	70.0	0.0	30.0	7.75	0.61	yes	ou	51	0.113
POT03	4.8	1.0	5.8	0.0	94.3	8.74	7.04	ou	yes	29	0.154
POT04	58.8	0.0	58.8	0.0	41.3	9.57	4.56	no	no	101	0.232
RALP1	11.8	0.0	11.8	0.0	88.3	9.50	0.00	yes	yes	49	0.026
RALP2	4.5	78.8	83.3	0.0	16.8	10.10	0.00	yes	yes	176	0.266
RALP3	30.0	0.0	30.0	0.0	70.0	9.24	0.00	yes	yes	14	0.015
SCTF1	12.8	0.0	12.8	26.3	61.0	7.59	94.01	no	no	0	0.000

Appendix B: Background information and raw data for statistical analysis for the 30 ponds.

ARBO Northern Red-legged Frog, adult Rana aurora 3 Pacific Chorus Frog, adult Pseudacris regilla 5 Goldfish Carassius auratus 6 BAYS Northern Red-legged Frog, adult Rana aurora 1 Rough-skinned Newt, adult Taricha granulosa 1 Mosquitofish Gambusia afjnis 36 Northern Red-legged Frog, adult Rana aurora 1 BILA Northestern Salamander, egg mass Ambystoma gracile 5 Pacific Chorus Frog, egg mass Pseudacris regilla 6 Northwestern Salamander, egg mass Pseudacris regilla 6 BLA Rough-skinned newt, adult Taricha granulosa 16 Pacific Chorus Frog, adult Pseudacris regilla 2 Coastal Giant Salamander, paedomorphic Dicamptodon tenebrosus 2 Cuthroat Trout, juvenile Oncorhynchus clarki 1 FIEL1 Northwestern Salamander, egg mass Ambystoma gracile 12 Northwestern Salamander, egg mass Anbystoma gracile 12 Northwestern Salamander,	Pond	Common Name, life stage	Scientific Name	TOTAL
Pacific Chorus Frog, adult Pseudacris regilla S Goldfish Carassius auratus 6 BAYS Northern Red-legged Frog, adult Rana aurora 1 Rough-skinned Newt, adult Taricha granulosa 1 Mosquitofish Gambusia afinis 36 Northern Red-legged Frog, adult Rana aurora 1 BILA Northestern Salamander, egg mass Ambystoma gracile 5 Pacific Chorus Frog, egg mass Pseudacris regilla 6 Northern Red-legged Frog, juvenile Rana aurora 2 Northwestern Salamander, egg mass Ambystoma gracile 6 BLLA Rough-skinned newt, adult Taricha granulosa 16 Pacific Chorus Frog, adult Pseudacris regilla 2 Coastal Giant Salamander, egg mass Ambystoma gracile 27 FIEL1 Northwestern Salamander, egg mass Ambystoma gracile 12 Northwestern Salamander, egg mass Ambystoma gracile 12 Northwestern Salamander, egg mass Ambystoma gracile 12 Northwestern Salamander, egg mass		Northern Red-legged Frog, adult	Rana aurora	3
BAYSNorthern Red-legged Frog, adult Rough-skinned Newt, adultRana aurora1MosquitofishGambusia afinis36Northern Red-legged Frog, adultRana aurora1BILANorthewstern Salamander, egg massAmbystoma gracile17Northestern Salamander, larvaeAmbystoma gracile5Pacific Chorus Frog, egg massPseudacris regilla6Northwestern Salamander, egg massPseudacris regilla6BLLARough-skinned newt, adultTaricha granulosa16Pacific Chorus Frog, adultPseudacris regilla2Coastal Giant Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL2Northwestern Salamander, egg massRana aurora30FRESNorthwestern Salamander, egg massAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northwestern Solamander, egg massPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3Pa	AKDU	Pacific Chorus Frog, adult	Pseudacris regilla	5
BAYS Rough-skinned Newt, adult Taricha granulosa 1 Mosquitofish Gambusia afinis 36 Northern Red-legged Frog, adult Rana aurora 1 BILA Northwestern Salamander, egg mass Ambystoma gracile 5 Pacific Chorus Frog, egg mass Pseudacris regilla 6 Northwestern Salamander, egg mass Pseudacris regilla 6 BLLA Rough-skinned newt, adult Taricha granulosa 16 Pacific Chorus Frog, adult Pseudacris regilla 2 Coastal Giant Salamander, paedomorphic Dicamptodon tenebrosus 2 FIEL1 Northwestern Salamander, egg mass Ambystoma gracile 27 Outthroat Trout, juvenile Oncorhynchus clarki 1 FIEL 2 Northwestern Salamander, egg mass Ambystoma gracile 12 Northwestern Salamander, egg mass Rana aurora 30 30 FRES Northwestern Salamander, egg mass Ambystoma gracile 25 Northwestern Salamander, egg mass Ambystoma gracile 1 HBWR1 Three-spine Stickleback Gasterosteus aculeatus 6 Northwestern Salamand		Goldfish	Carassius auratus	6
Rough-skinned Newt, adult Taricha granulosa 1 Mosquitofish Gambusia afinis 36 Northern Red-legged Frog, adult Rana aurora 1 BILA Northewstern Salamander, egg mass Ambystoma gracile 5 Pacific Chorus Frog. egg mass Pseudacris regilla 6 Northern Red-legged Frog, juvenile Rana aurora 2 Northwestern Salamander, egg mass Ambystoma gracile 6 BLLA Rough-skinned newt, adult Taricha granulosa 16 Pacific Chorus Frog, adult Pseudacris regilla 2 Coastal Giant Salamander, egg mass Ambystoma gracile 2 Coastal Giant Salamander, egg mass Ambystoma gracile 27 Cutthroat Trout, juvenile Oncorhynchus clarki 1 FIEL 1 Northwestern Salamander, egg mass Rana aurora 30 FRES Northwestern Salamander, egg mass Ambystoma gracile 25 Northwestern Salamander, egg mass Ambystoma gracile 12 HBWR1 Three-spine Stickleback Gasterosteus aculeatus 6	DAVC	Northern Red-legged Frog, adult	Rana aurora	1
Northern Red-legged Frog, adultRana aurora1BILANorthwestern Salamander, egg massAmbystoma gracile17Northestern Salamander, larvaeAmbystoma gracile5Pacific Chorus Frog, egg massPseudacris regilla6Northwestern Salamander, egg massAmbystoma gracile6BLLARough-skinned newt, adultTaricha granulosa16Pacific Chorus Frog, adultPseudacris regilla2Coastal Giant Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northwestern Salamander, egg massAnbystoma gracile14HBWR1Three-spine SticklebackGasterosteus aculeatus6Northwestern Salamander, egg massPseudacris regilla1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR3	DAIS	Rough-skinned Newt, adult	Taricha granulosa	1
BILANorthwestern Salamander, egg massAmbystoma gracile17BILANorthestern Salamander, larvaeAmbystoma gracile5Pacific Chorus Frog, egg massPseudacris regilla6Northern Red-legged Frog, juvenileRana aurora2Northwestern Salamander, egg massAmbystoma gracile6BLLARough-skinned newt, adultTaricha granulosa16Pacific Chorus Frog, adultPseudacris regilla2Coastal Giant Salamander, paedomorphicDicamptodon tenebrosus2FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northwestern Salamander, egg massRana aurora30FRESNorthwestern Salamander, egg massRana aurora30FRESNorthwestern Salamander, egg massAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3		-	Gambusia afinis	36
BILA Northestern Salamander, larvae Ambystoma gracile 5 Pacific Chorus Frog, egg mass Pseudacris regilla 6 Northern Red-legged Frog, juvenile Rana aurora 2 Northwestern Salamander, egg mass Ambystoma gracile 6 BLLA Rough-skinned newt, adult Taricha granulosa 16 Pacific Chorus Frog, adult Pseudacris regilla 2 Coastal Giant Salamander, egg mass Ambystoma gracile 2 FIEL1 Northwestern Salamander, egg mass Ambystoma gracile 2 FIEL2 Northwestern Salamander, egg mass Ambystoma gracile 12 Northern Red-legged Frog, egg mass Rana aurora 30 FRES Northwestern Salamander, egg mass Ambystoma gracile 1 HBWR1 Three-spine Stickleback Gasterosteus aculeatus 6 Northern Red-legged Frog, adult Rana aurora 1 HBWR2 Rough-skinned newt, adult Taricha granulosa 1 Pacific Chorus Frog, egg mass Pseudacris regilla 1 Pacific Chorus Frog, adult Pseudacris regilla 1 Pacific Chorus Frog, adult <		Northern Red-legged Frog, adult	Rana aurora	1
BILA Northestern Salamander, larvae Ambystoma gracile 5 Pacific Chorus Frog, egg mass Pseudacris regilla 6 Northern Red-legged Frog, juvenile Rana aurora 2 Northwestern Salamander, egg mass Ambystoma gracile 6 BLLA Rough-skinned newt, adult Taricha granulosa 16 Pacific Chorus Frog, adult Pseudacris regilla 2 Coastal Giant Salamander, egg mass Ambystoma gracile 2 FIEL1 Northwestern Salamander, egg mass Ambystoma gracile 2 FIEL2 Northwestern Salamander, egg mass Ambystoma gracile 12 Northern Red-legged Frog, egg mass Rana aurora 30 FRES Northwestern Salamander, egg mass Ambystoma gracile 1 HBWR1 Three-spine Stickleback Gasterosteus aculeatus 6 Northern Red-legged Frog, adult Rana aurora 1 HBWR2 Rough-skinned newt, adult Taricha granulosa 1 Pacific Chorus Frog, egg mass Pseudacris regilla 1 Pacific Chorus Frog, adult Pseudacris regilla 1 Pacific Chorus Frog, adult <	рп а	Northwestern Salamander, egg mass	Ambystoma gracile	17
Pacific Chorus Frog, egg massPseudacris regilla6Northern Red-legged Frog, juvenile Northwestern Salamander, egg massAmbystoma gracile6BLLARough-skinned newt, adultTaricha granulosa16Pacific Chorus Frog, adultPseudacris regilla2Coastal Giant Salamander, paedomorphicDicamptodon tenebrosus2FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northwestern Salamander, egg massRana aurora30FRESNorthwestern Salamander, larvaeAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, egg massPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern	BILA		Ambystoma gracile	5
Northern Red-legged Frog, juvenileRana aurora2Northwestern Salamander, egg massAmbystoma gracile6BLLARough-skinned newt, adultTaricha granulosa16Pacific Chorus Frog, adultPseudacris regilla2Coastal Giant Salamander, paedomorphicDicamptodon tenebrosus2FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL2Northwestern Salamander, egg massAmbystoma gracile12Northwestern Salamander, egg massAmbystoma gracile25Northwestern Salamander, egg massRana aurora30FRESNorthwestern Salamander, egg massAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1 </td <td></td> <td>Pacific Chorus Frog, egg mass</td> <td></td> <td>6</td>		Pacific Chorus Frog, egg mass		6
Northwestern Salamander, egg massAmbystoma gracile6BLLARough-skinned newt, adultTaricha granulosa16Pacific Chorus Frog, adultPseudacris regilla2Coastal Giant Salamander, paedomorphicDicamptodon tenebrosus2FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cuthroat Trout, juvenileOncorhynchus clarki1FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northern Red-legged Frog, egg massRana aurora30FRESNorthwestern Salamander, egg massAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, egg massPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla<				2
BLLARough-skinned newt, adultTaricha granulosa16Pacific Chorus Frog, adultPseudacris regilla2Coastal Giant Salamander, paedomorphicDicamptodon tenebrosus2FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northern Red-legged Frog, egg massRana aurora30FRESNorthwestern Salamander, larvaeAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northwestern Salamander, egg massAmbystoma gracile1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultRana aurora1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, egg massPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla4Ibwr4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1			Ambystoma gracile	6
Pacific Chorus Frog, adultPseudacris regilla2Coastal Giant Salamander, paedomorphicDicamptodon tenebrosus2FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northern Red-legged Frog, egg massRana aurora30FRESNorthwestern Salamander, egg massAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla6HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile <td< td=""><td>BLLA</td><td></td><td></td><td>16</td></td<>	BLLA			16
Coastal Giant Salamander, paedomorphicDicamptodon tenebrosus2FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northern Red-legged Frog, egg massRana aurora30FRESNorthwestern Salamander, larvaeAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, egg massPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, egg massPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT3Northern Red-legged Frog, adultPseudacris regilla4JCLT3Northern Red-legged Frog, adultRana aurora2Northern Red-legged Frog, adultPseudacris regi		-	U U	2
FIEL1Northwestern Salamander, egg massAmbystoma gracile27Cutthroat Trout, juvenileOncorhynchus clarki1FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northern Red-legged Frog, egg massRana aurora30FRESNorthwestern Salamander, larvaeAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, egg massPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT3Northern Red-legged Frog, adultRana aurora2Northwestern Salamander, egg massAmbystoma gracile		-	0	2
FIEL1Cutthroat Trout, juvenileOncorhynchus clarki1FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northern Red-legged Frog, egg massRana aurora30FRESNorthwestern Salamander, larvaeAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, egg massPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR3Pacific Chorus Frog, egg massPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT3Northern Red-legged Frog, adultRana aurora2Northern Red-legged Frog, adultPseudacris regilla4JCLT3Northern Red-legged Frog, adultRana aurora			•	
FIEL 2Northwestern Salamander, egg massAmbystoma gracile12Northern Red-legged Frog, egg massRana aurora30FRESNorthwestern Salamander, larvaeAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR3Pacific Chorus Frog, egg massPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultPseudacris regilla4Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT3Northern Red-legged Frog, adultRana aurora2Northern Red-legged Frog, adultRana aurora2JCLT3Northern Red-legged Frog, adultRana aurora2Northern Red-legged Frog, adultRana aurora2Northern Red-	FIELI			1
Northern Red-legged Frog, egg massRana aurora30FRESNorthwestern Salamander, larvaeAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT3Northern Red-legged Frog, adultRana aurora2Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla4	FIEL 2	· · · · · · · · · · · · · · · · · · ·		12
FRESNorthwestern Salamander, larvaeAmbystoma gracile25Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla1HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla4JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla4JCLT3Northwestern Salamander, egg massAmby			• • •	30
Northwestern Salamander, egg massAmbystoma gracile1HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, egg massPseudacris regilla6HBWR4Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northern Red-legged Frog, adultRana aurora2Northern Red-legged Frog, adultRana aurora2JCLT3Northern Red-legged Frog, adultRana aurora2Northern Red-legged Frog, adultRana aurora1Northern Red-legged Frog, adultRana aurora1Northern Red-legged Frog, adultRana aurora<	FRES		Ambystoma gracile	25
HBWR1Three-spine SticklebackGasterosteus aculeatus6Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, adultPseudacris regilla6HBWR4Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HBWR4Northern Red-legged Frog, adultPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla100		-		1
Northern Red-legged Frog, adultRana aurora1HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, adultPseudacris regilla6HBWR4Pacific Chorus Frog, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northern Red-legged Frog, adultRana aurora2Northern Red-legged Frog, adultRana aurora2JCLT3Northern Red-legged Frog, adultRana aurora1Northern Red-legged Frog, adultRana aurora<	HBWR1			6
HBWR2Rough-skinned newt, adultTaricha granulosa1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla100		· · · · · · · · · · · · · · · · · · ·	Rana aurora	1
Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT1Pacific Treefrog, adultPseudacris regilla4JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla100	HBWR2		Taricha granulosa	1
Pacific Chorus Frog, egg massPseudacris regilla6HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT1Pacific Treefrog, adultPseudacris regilla4JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1ICLT3Northwestern Salamander, egg massInterview of the second o		-	0	1
HBWR3Pacific Chorus Frog, adultPseudacris regilla4Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT1Pacific Treefrog, adultPseudacris regilla4JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northwestern Salamander, egg massAmbystoma gracile2JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JOLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JOLT3Northwestern Salamander, egg massAmbystoma gracile1JOLT3Northwest		-	Pseudacris regilla	6
Rough-skinned newt, adultTaricha granulosa3HBWR4Northern Red-legged Frog, adultRana aurora2Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT1Pacific Treefrog, adultPseudacris regilla4JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JOLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massAmbystoma gracile1JOLT3Northwestern Salamander, egg massAmbystoma gracile1JOLT3Northwestern Salamander, egg massAmbystoma gracile1JOLT3Northwestern Salamander, egg massAmbystoma gracile1JOLT3Northwestern Salamander, egg massAmbystoma gracile1	HBWR3		-	4
HBWR4Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT1Pacific Treefrog, adultPseudacris regilla4JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Northwestern Salamander, egg massPseudacris regilla100		Rough-skinned newt, adult	Taricha granulosa	3
Pacific Chorus Frog, adultPseudacris regilla1Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT1Pacific Treefrog, adultPseudacris regilla4JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Pacific Chorus Frog, egg massPseudacris regilla100		Northern Red-legged Frog, adult	Rana aurora	2
Pacific Chorus Frog, egg massPseudacris regilla1HESPNorthwestern Salamander, egg massAmbystoma gracile2Three-spine SticklebackGasterosteus aculeatus14JCLT1Pacific Treefrog, adultPseudacris regilla4JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Pacific Chorus Frog, egg massPseudacris regilla100	HBWK4	Pacific Chorus Frog, adult	Pseudacris regilla	1
HESPNorthwestern Salamander, egg mass Three-spine SticklebackAmbystoma gracile2JCLT1Pacific Treefrog, adultPseudacris regilla4JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Pacific Chorus Frog, egg massPseudacris regilla100			Pseudacris regilla	1
Three-spine SticklebackGasterosteus aculeatus14JCLT1Pacific Treefrog, adultPseudacris regilla4JCLT2Three-spine SticklebackGasterosteus aculeatus1JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1JCLT3Pacific Chorus Frog, egg massPseudacris regilla100	HESP		Ambystoma gracile	2
JCLT2Three-spine SticklebackGasterosteus aculeatus1Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla100				14
JCLT2Three-spine SticklebackGasterosteus aculeatus1Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla100	JCLT1	Pacific Treefrog, adult	Pseudacris regilla	4
JCLT3Northern Red-legged Frog, adultRana aurora2JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla100	JCLT2		Ě	1
JCLT3Northwestern Salamander, egg massAmbystoma gracile1Pacific Chorus Frog, egg massPseudacris regilla100		÷	Rana aurora	2
JCL13Pacific Chorus Frog, egg massPseudacris regilla100			Ambystoma gracile	1
	JCL13			100
				9

Appendix C: Amphibian and fish sighting.

Appendix C: Amphibian and fish sightings.

Pond	Common Name, life stage	Scientific Name	TOTAL
	Northern Red-legged Frog, adult	Rana aurora	1
	Northwestern Salamander, egg mass	Ambystoma gracile	6
MACR1	Northwestern Salamander, larvae	Ambystoma gracile	11
	Pacific Chorus Frog, adult	Pseudacris regilla	1
	Rough-skinned Newt, adult	Taricha granulosa	26
MACR2	Mosquitofish	Rana aurora	2
MACK2	Pacific Chorus Frog, adult	Pseudacris regilla	8
MACR3	Rough-skinned Newt, adult	Taricha granulosa	2
MACR4	Northern Red-legged Frog, adult	Rana aurora	2
MACK4	Pacific Chorus Frog, adult	Pseudacris regilla	1
	Goldfish	Carassius auratus	3
MCKI	Koi	Cyprinus carpio	1
	Northern Red-legged Frog, adult	Rana aurora	4
NOBA	Rough-skinned Newt, adult	Taricha granulosa	3
NOBA	Northwestern Salamander, egg mass	Ambystoma gracile	1
POTO1	Northern Red-legged Frog, adults	Rana aurora	6
POTO2	Northern Red-legged Frog, adult	Rana aurora	2
P0102	Pacific Chorus Frog, adult	Pseudacris regilla	2
POTO3	Three-spine Stickleback	Gasterosteus aculeatus	13
	Northern Red-legged Frog, adult	Rana aurora	3
	Pacific Chorus Frog, adult	Pseudacris regilla	1
RALP1	Prickly Sculpin	Cottus asper	1
	Tidewater Goby	Eucyclogobius newberryi	2
	Three-spine Stickleback	Gasterosteus aculeatus	21
RALP2	Northern Red-legged Frog, adult	Rana aurora	4
	Pacific Chorus Frog, egg mass	Pseudacris regilla	9
	Pacific Chorus Frog, adult	Pseudacris regilla	5
	Rough-skinned Newt, adult	Taricha granulosa	7
	Three-spine Stickleback	Gasterosteus aculeatus	155
	Northern Red-legged Frog, adult	Rana aurora	5
RALP3	Pacific Chorus Frog, egg mass	Pseudacris regilla	1
KALF J	Pacific Chorus Frog, adult	Pseudacris regilla	5
	Three-spine Stickleback	Gasterosteus aculeatus	900

Appendix C continues: Amphibian and fish sightings totals

Northern Red-legged Frog, adult*^	Rana aurora	60
Northwestern Salamander, egg mass*	Ambystoma gracile	46
Northwestern Salamander, larvae^	Ambystoma gracile	41
Pacific Chorus Frog, egg mass*	Pseudacris regilla	117
Pacific Chorus Frog, adult*^	Pseudacris regilla	39
Rough-skinned Newt, adult*^	Taricha granulosa	78
Coastal Giant Salamander, paedomorphic^	Dicamptodon tenebrosus	2
Goldfish	Carassius auratus	9
Koi	Cyprinus carpio	1
Prickly Sculpin [^]	Cottus asper	1
Tidewater Goby^	Eucyclogobius newberryi	2
Mosquitofish [^]	Rana aurora	38
Cutthroat Trout, juvenile [^]	Oncorhynchus clarki	2
Three-spine Stickleback^	Gasterosteus aculeatus	1110

*casual observation (not full survey)

^caught in minnow trap