# University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

USGS Staff -- Published Research

**US Geological Survey** 

2008

# Range-wide Phylogeographic Analysis of the Spotted Frog Complex (*Rana luteiventris* and *Rana pretiosa*) in Northwestern North America

W. Chris Funk Colorado State University - Fort Collins, Chris.Funk@colostate.edu

Christopher A. Pearl U.S. Geological Survey, christopher\_pearl@usgs.gov

Hope M. Draheim University of Michigan - Ann Arbor

Michael J. Adams U.S. Geological Survey

Thomas D. Mullins U.S. Geological Survey, tom\_mullins@usgs.gov

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub

Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons

Funk, W. Chris; Pearl, Christopher A.; Draheim, Hope M.; Adams, Michael J.; Mullins, Thomas D.; and Haig, Susan M., "Range-wide Phylogeographic Analysis of the Spotted Frog Complex (*Rana luteiventris* and *Rana pretiosa*) in Northwestern North America" (2008). *USGS Staff -- Published Research*. 660. https://digitalcommons.unl.edu/usgsstaffpub/660

This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

## Authors

W. Chris Funk, Christopher A. Pearl, Hope M. Draheim, Michael J. Adams, Thomas D. Mullins, and Susan M. Haig

Contents lists available at ScienceDirect

# Molecular Phylogenetics and Evolution

journal homepage: www.elsevier.com/locate/ympev

# Range-wide phylogeographic analysis of the spotted frog complex (*Rana luteiventris* and *Rana pretiosa*) in northwestern North America

W. Chris Funk<sup>a,b,\*</sup>, Christopher A. Pearl<sup>a</sup>, Hope M. Draheim<sup>a,c</sup>, Michael J. Adams<sup>a</sup>, Thomas D. Mullins<sup>a</sup>, Susan M. Haig<sup>a</sup>

<sup>a</sup> US Geological Survey Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA

<sup>b</sup> Department of Biology, Colorado State University, Fort Collins, CO 80523, USA

<sup>c</sup> Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA

#### A R T I C L E I N F O

Article history: Received 18 March 2008 Revised 9 May 2008 Accepted 27 May 2008 Available online 4 June 2008

Keywords: Rana Spotted frog Northwestern North America Mitochondrial DNA Phylogeography Conservation genetics Population expansion

#### 1. Introduction

#### A fundamental premise of phylogeography is that geological events, climatic history, and environmental heterogeneity play an important role in cladogenesis (Avise, 2000). The dramatic geological and climatic history and striking habitat diversity of northwestern North America, ranging from temperate rainforest to high desert, have made it a geographic focus of many phylogeographic studies (Brunsfeld et al., 2001; Carstens et al., 2005; Soltis et al., 1997). Since the beginning of the Pliocene (5 mya), two main events have dominated the geological and climatic history of the region. First, major uplift of the Cascade/Sierra chain (in southern British Columbia, western Washington and Oregon, and eastern California) in the Pliocene (5-2 mya) produced a rain shadow that caused xerification of the Columbia Plateau (between the Cascade and Rocky Mountain chains; Graham, 1999). This resulted in isolation of mesic coniferous forest in the Cascade Range and northern Rocky Mountains by intervening dry, steppe vegetation in the Columbia Plateau. Subsequently, Pleistocene glaciation occurring in approximately 100,000-year cycles (1.8-20,000 mya) had enormous impacts on the geographic distributions of organisms in the region (Brunsfeld et al., 2001).

E-mail address: chris.funk@colostate.edu (W.C. Funk).

#### ABSTRACT

The dynamic geological and climatic history of northwestern North America has made it a focal region for phylogeography. We conducted a range-wide phylogeographic analysis of the spotted frog complex (*Rana luteiventris* and *Rana pretiosa*) across its range in northwestern North America to understand its evolutionary history and the distribution of clades to inform conservation of *R. pretiosa* and Great Basin *R. luteiventris*, candidates for listing under the US Endangered Species Act. Mitochondrial DNA sequence data from a segment of the cytochrome *b* gene were obtained from 308 *R. luteiventris* and *R. pretiosa* from 96 sites. Phylogenetic analysis revealed one main *R. pretiosa* clade and three main *R. luteiventris* clades, two of which overlapped in southeastern Oregon. The three *R. luteiventris* clades were also uncovered within the Great Basin. Low genetic variation in *R. pretiosa* and the southeastern Oregon clade of *R. luteiventris* suggests concern about their vulnerability to extinction.

© 2008 Elsevier Inc. All rights reserved.

During these cycles, much of the region was buried under cordilleran and alpine ice for 90,000 years each cycle, splitting species' ranges into isolated refugia.

Several phylogeographic breaks have been uncovered in northwestern North America that have been attributed to Cascade uplift, isolation in habitat refugia during Pleistocene glaciation, and geographic barriers. Many species (and species complexes) exhibit a deep, east-west phylogeographic break between the coastal/Cascade region and areas to the east (Plethodon idahoensis and Plethodon vandykei, Carstens et al., 2004: Microtus longicaudus, Conrov and Cook, 2000: Sorex monticolus, Demboski and Cook, 2001; Thamnophis sirtalis, Janzen et al., 2002; Ascaphus truei and A. montanus, Nielson et al., 2001; Poecile gambeli, Spellman et al., 2007; Salvelinus confluentus, Spruell et al., 2003; Dicamptodon aterrimus and D. copei, Steele et al., 2005; Phrynosoma douglasi, Zamudio et al., 1997). The timing of this split appears to be linked to Cascade orogeny (Carstens et al., 2004, 2005). Coastal and Cascade species also show north-south breaks that have been attributed to isolation in Pleistocene refugia (Brunsfeld et al., 2001; Steele and Storfer, 2006) and by rivers (Miller et al., 2006b; Monsen and Blouin, 2003). Further to the east, a phylogeographic break has been found between the Great Basin (in southeastern Oregon, southern Idaho, Nevada, and northern Utah) and northern Rockies (to the north of the Great Basin; Swenson and Howard, 2005).





<sup>\*</sup> Corresponding author. Fax: +1 970 491 0649.

<sup>1055-7903/\$ -</sup> see front matter  $\odot$  2008 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2008.05.037

Identifying phylogeographic breaks and the distributions of clades is not only important for understanding the effects of geographic and climatic events on diversification, but also for identifying cryptic species (Bickford et al., 2007) and evolutionary significant units (ESUs; Moritz, 1994) for conservation. An ESU "can be defined broadly as a population or group of populations that merit separate management or priority for conservation because of high distinctiveness (both genetic and ecological)" (Allendorf and Luikart, 2007). Phylogeographic approaches have been particularly important for identifying and defining species and ESUs of declining and threatened frogs in the genus Rana in the western US (Monsen and Blouin, 2003; Shaffer et al., 2004). The western US has experienced pronounced amphibian declines (Stuart et al., 2004), and Rana frogs and Bufo toads in particular have experienced significant declines (Corn, 1994; Drost and Fellers, 1996; Hayes and Jennings, 1986). The California red-legged frog (R. dravtonii) is listed under the US Endangered Species Act (ESA) as threatened (USFWS, 1996) and the southern Distinct Population Segment (DPS) of the mountain yellow-legged frog (R. muscosa) is listed as endangered (USFWS, 1999). Moreover, six ranids are species of concern or sensitive in Oregon, four in Washington, five in British Columbia, and one in Montana (Corkran and Thoms, 1996; Werner et al., 2004).

The Oregon spotted frog (R. pretiosa) and the Great Basin DPS of the Columbia spotted frog (R. luteiventris) have experienced severe declines and are candidates for listing under the ESA (USFWS, 1993, 1997). Surveys of historically occupied sites indicate that R. pretiosa is extirpated from 70% to 90% of its historic range (Hayes et al., 1997; McAllister et al., 1993), and most remaining populations are small, geographically isolated, or restricted to high elevation sites (Hayes et al., 1997; C. A. Pearl, unpublished data). Causes of decline include habitat loss and modification, introduced predators, and water quality degradation (Pearl and Hayes, 2005). Great Basin R. luteiventris have also declined significantly in recent years (Reaser, 1997; USFWS, 2004). Surveys in 1994–1996 revealed that R. luteiventris has disappeared from 54% of surveyed sites in Nevada known to have populations before 1993. In Idaho, 61% of the 49 known populations have 10 or fewer frogs; in Oregon, 81% of the 16 known populations appear to support fewer than 10 frogs (USFWS, 2004). Threats to the Great Basin DPS likely include habitat loss, modification, and fragmentation; introduced predators; and emerging infectious diseases such as the amphibian chytrid fungus (Batrachochytrium dendrobatidis) which has been implicated in global amphibian declines (Berger et al., 1998; Pounds et al., 2006; Reaser and Pilliod, 2005; USFWS, 2004). Populations of R. luteiventris along the Wasatch Front and Western Desert of Utah are also of conservation concern (Reaser and Pilliod, 2005).

Previous genetic and morphological analyses of the spotted frog complex (R. luteiventris and R. pretiosa) suggest that there may be significant cryptic diversity in this widespread complex. Based on alloyzme and morphological analysis, Green et al. (1996, 1997) split R. pretiosa into two separate species: R. pretiosa and R. luteiventris. In this same analysis, Green et al. (1996, 1997) suggested that R. luteiventris may actually consist of up to four different species. Subsequently, Bos and Sites (2001) analyzed mitochondrial DNA (mtDNA) sequences to investigate phylogeographic patterns in US populations of *R. luteiventris*, focusing on populations in Utah. They found three well-supported major clades-northern. Great Basin, and Utah-as well as two smaller clades nested within the Utah clade. A limitation of this study, however, was that large portions of the range of R. luteiventris were not included in the analysis, including the southern Yukon Territory, British Columbia, southeastern Oregon, southwestern Idaho, and much of western Montana. Landscape genetic analysis of R. luteiventris in Montana and Idaho has also shown that gene flow is restricted by mountain ridges and elevation (Funk et al., 2005a). Allozyme analyses grouped a population from eastern Oregon (Anthony Lake) with the Great Basin clade (Green et al., 1997), whereas mtDNA analysis grouped a different population from eastern Oregon ("Blue Mountains") with the northern clade (Bos and Sites, 2001). Thus inclusion of additional populations from eastern Oregon and southwestern Idaho is particularly important for resolving the distribution of the Great Basin clade, especially given that the Great Basin DPS is a candidate for ESA-listing.

The goal of this study was to conduct a range-wide phylogeographic analysis of the spotted frog complex to understand its evolutionary history and uncover the distribution of phylogeographic breaks and clades to inform conservation and management. In particular, our main questions were: (1) are there any north-south genetic breaks in the range of *R. pretiosa* as seen in many other taxa in the Pacific Northwest (western Oregon and Washington)?; (2) how many *R. luteiventris* clades are there and what are their distributions (and in particular, what is the distribution of the Great Basin clade)?; and (3) is there a genetic signature of population expansion (particularly in the northern *R. luteiventris* clade, as predicted by postglacial colonization) or population decline (especially in the Great Basin *R. luteiventris* clade and *R. pretiosa* which have experienced recent declines based on field surveys)?

#### 2. Materials and methods

#### 2.1. Sampling for molecular analysis

We analyzed tissue samples (tail or toe clips) from 126 *Rana luteiventris* representing 44 sites and from 60 *R. pretiosa* representing 15 sites (Fig. 1; Appendix A). One to 10 individuals were sampled per locality. We also used Bos and Sites' (2001) sequence data from another 121 *R. luteiventris* from 36 sites and 1 *R. pretiosa*. Thus combined, our analyses included 247 *R. luteiventris* from 80 sites and 61 *R. pretiosa* from 16 sites. This sampling spans the entire extant range of these two species, from the southern Yukon to Nevada and from western Oregon to Wyoming (Fig. 1). We also included one *R. aurora* and one *R. cascadae* which were designated as outgroups from the closely related *R. boylii* species group (= *Amerana* clade in Hillis and Wilcox, 2005).

#### 2.2. DNA extraction, amplification, and sequencing

Total genomic DNA was extracted from tissue samples using DNeasy Tissue Kits (Qiagen, Inc., Valencia, CA). Overlapping sets of primers were used to amplify a 902 bp segment of the mitochondrial cytochrome *b* gene using the polymerase chain reaction (PCR). Primers, PCR conditions, and sequencing protocol were described in Bos and Sites (2001). Editing and assembly of contigs was completed using BioEdit version 7.0.9.0 (Hall, 1999).

#### 2.3. Alignment and phylogenetic analyses

Sequences were aligned manually with BioEdit so as to minimize the number of changes required across taxa. Autapomorphies were verified by examining the original chromatograms. For phylogenetic analyses, Collapse version 1.2 (D. Posada, http:// darwin.uvigo.es) was used to reduce the dataset to unique haplotypes. Phylogenetic inference was based on maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses. Parsimony analyses were conducted in Paup\* version 4.0b10 (Swofford, 2000) using a heuristic search with 1000 random addition-sequence replicates and tree-bisection-reconnection (TBR) branch swapping. Nodal support was assessed through nonparametric bootstrap analysis of 1000 bootstrap replicates with 10 random addition-sequence replicates per bootstrap replicate.



**Fig. 1.** Distribution of sampling sites for *Rana luteiventris* (circles and light grey shading), *R. pretiosa* (triangles and dark grey), *R. cascadae* (square; outgroup), and *R. aurora* (star; outgroup). Site numbers correspond to those in Fig. 2 and Appendices A and B. Sites 1–39 are the same as in Bos and Sites (2001). Species' ranges are from the IUCN (2006) Global Amphibian Assessment (sites 1 and 47 are *R. luteiventris*, although they are not included in the current IUCN range map for this species). Abbreviations are provided for United States and Canadian provinces where *R. luteiventris* or *R. pretiosa* are found: AB = Alberta, AK = Alaska, BC = British Columbia, CA = California, ID = Idaho, MT = Montana, NV = Nevada, OR = Oregon, UT = Utah, WA = Washington, WY = Wyoming, YT = Yukon Territory.

The most appropriate model of sequence evolution for the likelihood analysis was selected using Akaike's information criterion (AIC; Akaike, 1974) using Modeltest version 3.7 (Posada and Crandall, 1998). Likelihood analysis was then conducted in Paup\* using successive iterations with starting parameters based on estimates from the previous tree, a method shown to perform well (Sullivan et al., 2005). Parameters for the first iteration were estimated from the most-parsimonious tree with the best likelihood score. Iterations were continued until successive searches yielded identical trees. Bayesian analyses were conducted in MrBayes version 3.1.1 (Ronquist and Huelsenbeck, 2003), with two runs of four Markov chains each. The chain was sampled once every 1000 generations, and each ran for two million generations. We used a conservative burn-in that was determined by examining stationarity of the likelihood scores and convergence of posterior probabilities between the two runs using the standard deviation of split frequencies.

#### 2.4. Population genetic analyses

We used all 308 *Rana luteiventris* and *Rana. pretiosa* sequences for population genetic analyses, but did not use outgroup sequences (R. aurora and R. cascadae). All population genetic analyses were performed using Arlequin version 3.01 (Excoffier et al., 2005). Genetic variation within sites was estimated using a variety of diversity statistics, including haplotype diversity (h), number of polymorphic sites (*s*), and nucleotide diversity ( $\pi_n$ ). Historic population expansion and decline were assessed using three different methods. The first method was Harpending's (1994) raggedness index of mismatch distributions. Rapid population expansion results in smooth, unimodal mismatch distributions. A smaller raggedness index indicates a smoother mismatch distribution. One thousand bootstrap replicates were used to test the probability of a raggedness index as large as observed under a null hypothesis of a sudden population expansion. The second and third methods were Tajima's D (Tajima, 1989) and Fu's F<sub>s</sub> (Fu, 1997). Negative values of D and  $F_s$  are predicted under population expansion. Positive values of D, on the other hand, indicate population decline. The significance of *D* and *F*<sub>s</sub> were tested using 10,000 bootstrap simulations.

We also used analysis of molecular variance (AMOVA; Excoffier et al., 1992) to determine the proportion of variation explained by clades identified in the phylogenetic analysis. Only sites with more than one individual were included in this analysis (72 out of 96 *R. luteiventirs* and *R. pretiosa* sites). The five different groupings analyzed were species (*R. luteiventris* versus *R. pretiosa*); major clades (northern, Great Basin, Utah, and *R. pretiosa*); northern clades (Blue Mountain versus the rest of the northern clade); Great Basin clades (southwestern Idaho and Nevada versus southeastern Oregon); and *R. pretiosa* clades (Columbia, southern Oregon, and the rest of *R. pretiosa*).

#### 3. Results

#### 3.1. Phylogenetic analyses

The final alignment was 902 bp long with 210 variable characters of which 158 were parsimony informative. A total of 62 unique haplotypes was found for the 247 *Rana luteiventris* individuals, of which 21 were new (not found by Bos and Sites, 2001). Six unique haplotypes were found for the 61 *R. pretiosa*, five of which were new.

All three phylogenetic analyses (MP, ML, and Bayesian) recovered the same four main, statistically well-supported clades: one *Rana pretiosa* clade and three *Rana luteiventris* clades (Figs. 2 and 3). The *R. pretiosa* clade was found in the currently recognized range of this species, from the southern Puget Trough (sites 84 and 85; refer to Fig. 1) to southern Oregon (site 98). The northern *R. luteiventris* clade is the largest of the three *R. luteiventris* clades, extending from the southern Yukon Territory (sites 40 and 41) to southeastern Oregon (site 61) and east to Wyoming (site 11). The



**Fig. 2.** Maximum likelihood topology. Numbers on branches are Bayesian posterior probabilities; asterisks indicate posterior probabilities of 100%. Site numbers correspond to those in Fig. 1 and Appendices A and B. Haplotype numbers are shown by terminal nodes and correspond to those in Appendix B. Haplotypes 1–41 are the same as in Bos and Sites (2001). Outgroup taxa are not shown.



**Fig. 3.** Geographic distribution of major clades (solid black lines) and nested clades (dashed lines) identified in the phylogenetic analyses, with mean percent corrected sequence divergence (and ranges in parentheses) shown within and among clades. Clade names correspond to those used in Fig. 2 and Tables 1–3. Triangles = *R. pretiosa*; circles = *R. luteiventris*. The open circle with a cross is Kingsbury Gulch (site 59), where haplotypes from the northern clade and Great Basin clade were found.

Great Basin *R. luteiventris* clade abuts the northern clade in southeastern Oregon and extends south to central Nevada (sites 25 and 26). Haplotypes from the northern and Great Basin clades were found together at one site, Kingsbury Gulch (site 59), in southeastern Oregon (Figs. 2 and 3). The Utah clade is restricted to western and central Utah. Mean ML-corrected sequence divergence between *R. pretiosa* and the three *R. luteiventris* clades ranged from 6.00% to 6.63% (Fig. 3). Mean sequence divergence between the three *R. luteiventris* clades ranged from 4.75% to 4.97%.

Well-supported clades were also found within each of the four main clades described above. Within *R. pretiosa*, two well-supported clades were found: the Columbia clade consisting of sites 86 and 87 on either side of the Columbia River and the southern Oregon clade including sites 95–98 (Figs. 2 and 3). Although these clades were well-supported, mean sequence divergence between them was only 0.74%. In the northern clade, the Blue Mountain clade was found in eastern Oregon and included sites 38, 54–56, 59, and 61. Mean sequence divergence between this clade and the rest of the northern clade was 1.08%. Within the Great Basin clade, we found two divergent clades, the southeastern Oregon clade (sites 59, 60, 62, and 63) and the southwestern Idaho/Nevada clade (all other sites in the Great Basin clade), separated by a mean

sequence divergence of 2.48%. In the Utah clade, two clades were also recovered, the Deep Creek clade (site 24) and another clade consisting of all other sites in Utah, separated by a mean sequence divergence of 1.41%.

The monophyly of *R. luteiventris*, however, was poorly supported (Bayesian posterior probability, BPP = 21%; Fig. 2). Other phylogenetic arrangements of the four main clades with similar (low) levels of support included ((Great Basin + RAPR), (Utah + Northern)) with BPP = 38%; ((Northern + Utah + RAPR), Great Basin) with BPP = 30%; ((Northern + Great Basin + RAPR), Utah) with BPP = 23%; and ((Utah + Great Basin + RAPR), Northern) with BPP = 18%. Because none of these arrangements was well-supported, we show *R. luteiventris* to be monophyletic (Fig. 2).

#### 3.2. Population genetic analyses

Population genetic analyses revealed substantial variation among clades in the level of within population genetic variation as measured by haplotype and nucleotide diversity (Table 1). For the four main clades, haplotype and nucleotide diversity were lowest for *R. pretiosa* and highest for the Great Basin. For the smaller clades nested within the main clades, haplotype and nucleotide

| Table 1                                                                               |
|---------------------------------------------------------------------------------------|
| Mitochondrial DNA diversity statistics for Rana luteiventris and R. pretiosa by clade |

| Clade               | No. of sites | No. of individs. | h    | S  | $\pi_n$             |
|---------------------|--------------|------------------|------|----|---------------------|
| Northern (RALU)     | 43           | 114              | 0.81 | 41 | 0.0041 ± 0.0023     |
| Blue Mt.            | 6            | 17               | 0.86 | 8  | $0.0021 \pm 0.0014$ |
| Utah (RALU)         | 13           | 66               | 0.86 | 27 | $0.0044 \pm 0.0025$ |
| Deep Cr.            | 1            | 10               | 0.73 | 4  | 0.0016 ± 0.0012     |
| Rest of Utah        | 12           | 56               | 0.82 | 14 | 0.0017 ± 0.0012     |
| Great Basin (RALU)  | 25           | 67               | 0.93 | 33 | 0.0106 ± 0.0055     |
| SW Idaho/Nevada     | 21           | 52               | 0.91 | 20 | $0.0048 \pm 0.0027$ |
| Southeastern Oregon | 4            | 15               | 0.64 | 2  | 0.0008 ± 0.0007     |
| Rana pretiosa       | 16           | 61               | 0.73 | 9  | 0.0023 ± 0.0015     |
| Columbia            | 2            | 8                | 0.57 | 2  | 0.0013 ± 0.0010     |
| Southern Oregon     | 4            | 18               | 0.29 | 1  | 0.0003 ± 0.0004     |

Clades correspond to those defined in Figs. 2 and 3. RALU is an abbreviation for *Rana luteiventris*; *h* is haplotype diversity; *s* is the number of polymorphic sites; and  $\pi_n$  is nucleotide diversity.

diversity were very low for southeastern Oregon (nested within the Great Basin) and the Columbia and southern Oregon clades (nested within *R. pretiosa*).

Tests of population expansion revealed a consistent signature of expansion only in the northern *R. luteiventris* clade (Table 2). In this clade, results of all three tests (raggedness of mismatch distributions, Tajima's *D*, and Fu's *F*<sub>s</sub>) were consistent with the predictions of an expanding population. Specifically, the mismatch distribution was smooth as indicated by a low raggedness value (0.031) and a large probability of observing a raggedness value this large or larger under the null hypothesis of expansion (*P* = 0.708); Tajima's *D* was negative (*D* = -1.61) and significant (*P* = 0.0001). Tajima's *D* was not significant in the other three clades. In fact, in two clades, the Great Basin and *R. pretiosa* clades, Tajima's *D* was positive, consistent with population decline rather than expansion.

Results of the AMOVAs are summarized in Table 3. Of the two grouping methods that included all *R. luteiventris* and *R. pretiosa* sites, 87.8% of the variation was ascribed to differences among major clades compared to 58.8% explained by currently recognized species. A large percentage of the variation was also accounted for by differences among the smaller, nested clades, ranging from 73.9% in the northern clade, to 80.7% in the Great Basin, to 83.8% in *R. pretiosa*.

#### 4. Discussion

#### 4.1. Phylogeographic breaks

Our phylogenetic and AMOVA analyses support three main *Rana luteiventris* clades plus one main *R. pretiosa* clade (Figs. 2 and 3; Table 3). These clades form four primary phylogenetic breaks between: (1) the Cascade Range (*R. pretiosa*) and inland *R. luteiventris* clades; (2) northern and Utah clades; (3) northern and Great Basin clades; and (4) Great Basin and Utah clades. The first three of these correspond with previously documented

#### Table 3

Analysis of molecular variance (AMOVA) results for Rana luteiventris and R. pretiosa

| Groups                  | No. of<br>groups | Variance<br>components                      | % of<br>variation      | P-value                       |
|-------------------------|------------------|---------------------------------------------|------------------------|-------------------------------|
| Species                 | 2                | Among groups<br>Among sites<br>Within sites | 58.75<br>40.06<br>1.20 | <0.0001<br><0.0001<br><0.0001 |
| Major clades            | 4                | Among groups<br>Among sites<br>Within sites | 87.83<br>10.65<br>1.52 | <0.0001<br><0.0001<br><0.0001 |
| Northern clades         | 2                | Among groups<br>Among sites<br>Within sites | 73.94<br>16.94<br>9.13 | <0.0001<br><0.0001<br><0.0001 |
| Great Basin clades      | 2                | Among groups<br>Among sites<br>Within sites | 80.68<br>15.17<br>4.14 | 0.0025<br><0.0001<br><0.0001  |
| Rana pretiosa<br>clades | 3                | Among groups<br>Among sites<br>Within sites | 83.76<br>16.24<br>0.00 | <0.0001<br><0.0001<br><0.0001 |

Groupings are species (*Rana luteiventris* versus *R. pretiosa*); major clades (Northern, Great Basin, Utah, and *R. pretiosa*); northern clades (Blue Mt. versus the rest of the northern clade); Great Basin clades (southwestern Idaho and Nevada versus southeastern Oregon); and *Rana pretiosa* clades (Columbia, southern Oregon, and the rest of *R. pretiosa*). *P*-values were calculated using 10,000 simulations.

phylogeographic breaks or contact zones, but we are unaware of other examples of a major break between Utah and Nevada.

The deepest split in the spotted frog complex phylogeny is between R. pretiosa in the Cascade Range (and lower Puget Trough) and the interior R. luteiventris clades. This Cascade Range/coastal vs. inland phylogenetic break has been a focus of attention in species associated with mesic, coniferous forests in disjunct populations in the coastal Pacific Northwest (primarily in western Washington, western Oregon, and northwestern California) and the inland northwest (in northern Idaho, northwestern Montana, and southeastern British Columbia: Brunsfeld et al., 2001: Carstens et al., 2004, 2005; Nielson et al., 2001). Rana pretiosa and R. luteiventris, however, are not mesic forest species, but instead inhabit lentic water bodies and streams embedded in a variety of terrestrial habitat types ranging from shrub-steppe to subalpine forest to mixed coniferous forests (Reaser and Pilliod, 2005). There are also several other species not tied to mesic forests that exhibit a deep phylogenetic break between the Cascade Range/coast and inland regions, including Pacific chorus frogs (Pseudacris regilla complex; Recuero et al., 2006), common garter snakes (Thamnophis sirtalis; Janzen et al., 2002), short-horned lizards (Phrynosoma douglasi; Zamudio et al., 1997), bull trout (Salvelinus confluentus; Spruell et al., 2003), mountain whitefish (Prosopium williamsoni; Whiteley et al., 2006), and mountain chickadees (Poecile gambeli; Spellman et al., 2007). Thus a Cascade/coastal vs. inland break appears to be the rule for most species (or species complexes), mesic forest or not, although there are some species in which this split is not found (water vole,

#### Table 2

Results of tests of historical population expansion for Rana luteiventris and R. pretiosa

| Clade              | n   | Raggedness | P(Raggedness) | Tajima's D | P(Tajima's D) | Fu's F <sub>s</sub> | P (Fu's F <sub>s</sub> ) |
|--------------------|-----|------------|---------------|------------|---------------|---------------------|--------------------------|
| Northern (RALU)    | 114 | 0.031      | 0.708         | -1.61      | 0.025         | -26.02              | < 0.0001                 |
| Utah (RALU)        | 66  | 0.038      | 0.322         | -0.93      | 0.193         | -25.91              | < 0.0001                 |
| Great Basin (RALU) | 67  | 0.036      | 0.165         | 1.25       | 0.914         | -24.63              | < 0.0001                 |
| Rana pretiosa      | 61  | 0.057      | 0.560         | 0.27       | 0.656         | -27.12              | < 0.0001                 |

Clades correspond to those defined in Figs. 2 and 3. RALU is an abbreviation for *Rana luteiventris*; *n* is the number of individuals. Raggedness values are measures of the smoothness of mismatch distributions, with lower raggedness values indicating smoother distributions. Smooth Poisson mismatch distributions are characteristic of rapid population expansion. *P* (Raggedness) is the probability of observing a distribution with higher raggedness under a null hypothesis of population expansion based on 1000 bootstrap replicates. Negative Tajima's *D* and Fu's *F*<sub>5</sub> values also indicate population expansion. *P* (Tajima's *D*) and *P* (Fu's *F*<sub>5</sub>) were calculated using 10,000 simulations.

*Microtus richardsoni*; dusky willow, *Salix melanopsis*; whitebark pine, *Pinus albicaulis*; Carstens et al., 2005).

It is not particularly surprising that disjunct, mesic forest species in the Pacific Northwest and Inland Northwest have diverged in allopatry after uplift of the Cascade Mountains and formation of the dry, Columbia Plateau in the Pliocene. The question remains, however, as to why more broadly distributed species not restricted to mesic forests, such as R. luteiventris and *R. pretiosa*, have diverged along this same east-west axis. There are several potential explanations for divergence of *R*. pretiosa from R. luteiventris clades to the east. One possible reason for this split is that the Cascade Mountains are a barrier to gene flow, causing allopatric speciation. Another possibility is that xerification of the Columbia Plateau east of the Cascade Range resulted in divergent selection pressures, causing parapatric, ecological speciation in the face of ongoing gene flow (Endler, 1977). Lastly, this mtDNA break may have occurred without any barrier to gene flow (e.g., Irwin, 2002), although this seems unlikely since many different species have a similar phylogeographic break in this same area.

Two of the other four phylogeographic breaks observed in this study also match previously observed breaks or contact zones. In particular, the break between the Utah and northern clades corresponds to one of the most significant phylogeographic breaks in North America (Swenson and Howard, 2005). Swenson and Howard's (2005) analysis of phylogeographic breaks did not include aquatic species, but the observation that this same break is seen in R. luteiventris, a highly aquatic frog, suggests that this break may also hold for aquatic species (although R. luteiventris can travel substantial distances overland; Pilliod et al., 2002). In addition, the break between the northern and Great Basin clades in R. luteiventris corresponds closely with one of Remington's (1968) "suture zones" (spatial clusters of hybrid-zones) which passes through southeastern Oregon. This area, however, was not identified by Swenson and Howard (2005) as a hotspot for phylogeographic breaks.

Within the four main clades, we also found support for several significant smaller clades ("nested clades": Figs. 2 and 3). The most divergent nested clades were found within the Great Basin: the southeastern Oregon and the southwestern Idaho/ Nevada clades. Mean sequence divergence between these two clades was 2.48%, much higher than between any other nested clades. Within the northern clade, we also found the Blue Mountain clade in eastern Oregon with a mean sequence divergence of 1.08% from other northern clade haplotypes. Finally, within R. pretiosa, we found two nested clades, the Columbia and southern Oregon clades. Although these two clades were well-supported, mean sequence divergence between them was only 0.74%, suggesting relatively recent divergence. These clades formed north-south phylogeographic breaks (albeit shallow breaks) as seen in many other species in the Cascade Range (Miller et al., 2005, 2006a; Nielson et al., 2006; Steele and Storfer, 2006), although exact locations of these breaks vary. Interestingly, the Columbia River does not act as a barrier in R. pretiosa. In fact, the Columbia clade crosses the Columbia River and includes one population from Washington on the north side and one from Oregon on the south side (Fig. 3). The effect of the Columbia River as a barrier appears to vary among species. In some, it corresponds with a genetic break (Monsen and Blouin, 2003), but in many it does not (Funk et al., 2008; Nielson et al., 2006; Recuero et al., 2006).

Although our analyses supported four main clades, the monophyly of *R. luteiventris* was not well-supported (BPP = 21%). Five other phylogenetic arrangements of the four main clades had similar, low levels of support (BPP = 18–38%). Resolving the rela-

tionships of these clades will require additional sequence data, ideally from multiple nuclear genes.

#### 4.2. Overlap of clades in southeastern Oregon

In southeastern Oregon, the northern and Great Basin clades overlap in Kingsbury Gulch (site 59; Figs. 2 and 3). Also further to the southwest, these two clades are adjacent to each other, separated by only 19 km between Mud Creek (site 61) in the northern clade and Lily Lake (site 62) in the Great Basin clade. In Kingsbury Gulch, two out of ten individuals had northern haplotypes (h36 and h55; Fig. 2) and the remaining eight individuals all had the same Great Basin haplotype (h56). Kingsbury Gulch is an isolated series of small ponds and pools connected by an ephemeral stream situated in dry, shrub-steppe habitat.

It is not possible to determine from the mtDNA data alone whether frogs in Kingsbury Gulch with Great Basin versus northern haplotypes interbreed freely and produce viable offspring, or whether they are reproductively isolated and therefore distinct species. Mean sequence divergence between these two clades is 4.81%, only 1.2% lower than between R. pretiosa and Great Basin R. luteiventris (6.00%; Fig. 3). Thus it is possible that the Great Basin and northern clades (and perhaps the Utah clade as well) are also different species. Fortunately, the presence of frogs with northern and Great Basin haplotypes at the same site provides an excellent opportunity to test the hypothesis that these two clades represent reproductively isolated species using nuclear markers such as microsatellite loci. If frogs with different haplotypes form distinct genetic groups at nuclear loci, it would provide strong evidence that they are different species. In contrast, if they do not form different genetic groups, then they should be considered members of the same species. Assessment of the taxonomic status of these different clades should also include phenotypic data on their morphology, calls, ecology, and natural history.

#### 4.3. Population expansion and declines

Some evidence was found for population expansion in all four main clades, but only in the northern *R. luteiventris* clade did all three tests consistently indicate expansion (Table 2). Moreover, in the northern clade, one haplotype (h48) was found over a huge area: central Oregon (sites 57 and 58), northern Idaho (50), central British Columbia (49), and extreme northwestern British Columbia and the southern Yukon Territory (sites 40–44, 46– 48; Figs. 1 and 2). These observations suggest a recent and rapid population expansion of the northern clade, likely following Pleistocene glacial recession. Similar patterns have been recovered in other phylogeographic studies in the Northwest (Carstens et al., 2004; Matocq, 2002; Spinks and Shaffer, 2005; Steele and Storfer, 2006).

In two clades, the Great Basin clade and *R. pretiosa*, Tajima's *D* was positive which is consistent with population declines, although these values were not statistically significant. In the Great Basin, however, the probability of a *D* value as large as observed by chance was only 0.086 (calculated by subtracting the *P*-value shown in Table 2 which is the probability of a *D* value as small as observed by chance from one). Even though not statistically significant, these positive Tajima's *D* values are of concern given that field surveys have shown severe declines both in Great Basin *R. luteiventris* (Reaser, 1997) and *R. pretiosa* (Hayes et al., 1997; McAllister et al., 1993). Testing for bottlenecks with nuclear markers, larger sample sizes, and more sophisticated bottleneck tests (e.g., program Bottleneck; Piry et al., 1999) will provide a better

understanding of the severity and significance of bottlenecks in these clades.

#### 4.4. Conservation implications

Our results have important implications for *R. pretiosa* and *R. luteiventris* conservation and management. First, by sampling extensively (96 sites) throughout the range of *R. pretiosa* and *R. luteiventris*, we were able to clearly define the boundaries of the four main clades. In particular, the range of the Great Basin clade, a group that is currently a candidate for listing under the US Endangered Species Act (ESA), was previously in question. Based on our analysis, this clade includes populations in Nevada, southwestern Idaho, and southeastern Oregon. Moreover, the high levels of sequence divergence among the *R. luteiventris* clades suggest that they may represent different species, but as explained above, additional genetic (in particular, nuclear markers) and phenotypic data are needed to test this hypothesis.

We also found two well-supported and highly divergent clades within the Great Basin clade, a southeastern Oregon clade and a separate southwestern Idaho/Nevada clade. The southeastern Oregon clade consists of only four known populations: Parsnip Creek (site 63), Lily Lake (62), Dry Creek (60), and Kingsbury Gulch (59). All of these populations appear to be small and highly isolated, separated from each other by 46-236 km straight-line distance, well beyond the maximum known dispersal distance for R. luteiventris of 5.8 km (Funk et al., 2005b). Monitoring at Kingsbury Gulch revealed a recent population decline from 211 estimated frogs in 2003 to 18 frogs in 2007 (M. J. Adams, unpublished data). Population estimates at Dry Creek have ranged between 62 and 255 from 2001 to 2006 (J. C. Engle, pers. comm.). No formal surveys have been conducted at Lily Lake or Parsnip Creek, but during sampling in the summer of 2006, only one adult frog was found at Lily Lake and only recently metamorphosed frogs (no adults) were found at Parsnip Creek (W. C. Funk, unpublished data). Given apparently small sizes of populations in the southeastern Oregon clade and their isolation, this very distinct clade (which may represent an incipient species) appears to be highly vulnerable to extinction.

Our population genetic analyses also revealed low levels of within population genetic variation in the southeastern Oregon *R. luteiventris* clade and in *R. pretiosa* (Table 1). Only three haplotypes were found in the southeastern Oregon clade, and only 6 were found across the entire range of *R. pretiosa*. Low genetic variation in these clades likely reflects small effective population sizes, historic or current genetic bottlenecks, and/or low

among population gene flow, all of which can reduce population viability via negative inbreeding effects (Crow and Kimura, 1970) and loss of adaptive genetic variation (Bürger and Lynch, 1995). Although loss of genetic variation at nuclear loci may be more likely to reduce fitness, low genetic variation in the mitochondrial genome should mirror low levels of nuclear genetic variation.

### 5. Conclusions

This study represents one of the largest phylogeographic studies (both in terms of numbers of sites and individuals) for northwestern North America, a focal region of interest in phylogeography. We found one well-supported Rana pretiosa clade and three highly divergent R. luteiventris clades that represent distinct evolutionary significant units at the very least, but possibly different species. Within the R. luteiventris Great Basin clade, we also found two well supported, divergent clades, the southeastern Oregon clade and the southwestern Idaho / Nevada clade, which have not previously been reported. In addition, two R. luteiventris clades, the Great Basin and northern clades, overlap in southeastern Oregon. Future genetic analysis using nuclear markers and phenotypic data will be essential for determining whether these clades are different species. Landscape genetic analysis will also be important for understanding demographic history, connectivity, and current population trends of small and declining populations of *R. pretiosa* throughout its range and *R. luteiventris*, particularly in the Great Basin.

#### Acknowledgments

We are indebted to the many people who provided samples or helped with sample collection and logistics in the field, particularly E. Bull, R. Demmer, J. David, J. Engle, S. Galvan, C. Goldberg, J. Hohmann, G. Hokit, H. Lingo, J. Matthews, B. Maxell, B. McCreary, C. Mellison, M. Meneks, M. Meyer, G. Miller, A. Moser, K. Paul, R. Roy, B. Slough, and M. Thompson. We thank D. Bos for providing information on his sequence data. We also thank M. Miller, D. Olson, G. Pauly, and one anonymous reviewer for comments on the manuscript. Funding was provided by the US Fish and Wildlife Service and the US Geological Survey Forest and Rangeland Ecosystem Science Center. Samples were collected under scientific collecting permits from the Oregon Department of Fish and Wildlife and the Washington Department of Fish and Wildlife. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

#### Appendix A

Site information and coordinates for samples used in phylogeographic analyses of Rana luteiventris and R. pretiosa

| State/province   | Site no. | e no. Site name/ description                 |   | Species | UTM coordinates |               |              |
|------------------|----------|----------------------------------------------|---|---------|-----------------|---------------|--------------|
|                  |          |                                              |   |         | Zone            | Easting       | Northing     |
| British Columbia | 42       | Pond between Bare Loon Lake and Bennett Lake | 1 | RALU    | 8               | 499063        | 6630791      |
|                  | 43       | Main Pond, Log Cabin                         | 1 | RALU    | 8               | 503747        | 6625224      |
|                  | 44       | Summit Creek wetlands, White Pass            | 1 | RALU    | 8               | 493425        | 6614092      |
|                  | 45       | Pond on Torres Channel, Atlin Lake           | 1 | RALU    | 8               | 559624        | 6584856      |
|                  | 46       | Pond on east shore of Atlin Lake             | 1 | RALU    | 8               | 567424        | 6571989      |
|                  | 47       | Pond near Lang Lake                          | 1 | RALU    | 9               | 457181        | 6564215      |
|                  | 48       | Pond on Sloko Inlet, Atlin Lake              | 1 | RALU    | 8               | 565847        | 6553406      |
|                  | 49       | Pond 1 FFTW                                  | 2 | RALU    | 10              | 511626        | 5970665      |
|                  |          |                                              |   |         |                 | (continued or | n next page) |

## Appendix A (continued)

| State/province | Site no. | Site name/ description                            | No.    | Species   | UTM ( | coordinates |          |
|----------------|----------|---------------------------------------------------|--------|-----------|-------|-------------|----------|
|                |          |                                                   |        |           | Zone  | Easting     | Northing |
| Idaho          | 2        | N Short Creek                                     | 2      | RALU      | 11    | 684103      | 5154039  |
|                | 3        | S Walton Lake                                     | 5      | RALU      | 11    | 682934      | 5150289  |
|                | 4        | Grouse Lake                                       | 4      | RALU      | 11    | 682990      | 5148445  |
|                | 5        | In and Out Lake                                   | 1      | RALU      | 11    | 694363      | 4987549  |
|                | 6        | Cache Lake                                        | 4      | RALU      | 11    | 688888      | 4994789  |
|                | 7        | Fawn Lake                                         | 3      | RALU      | 11    | 690091      | 4998539  |
|                | 50       | Benewah County                                    | 2      | RALU      | 11    | 526874      | 5241926  |
|                | 52       | Latah County                                      | 2      | RALU      | 11    | 507972      | 5174736  |
|                | 64       | Meadow Creek                                      | 3      | RALU      | 11    | 530479      | 4741610  |
|                | 65       | Sam Noble Springs A                               | 3      | RALU      | 11    | 538610      | 4719289  |
|                | 66       | Sam Noble Springs B                               | 3      | RALU      | 11    | 538685      | 4719055  |
|                | 67       | Stoneman                                          | 5      | RALU      | 11    | 521500      | 4713163  |
| Montana        | 8        | Sweetgrass River                                  | 1      | RALU      | 12    | 581160      | 5105476  |
|                | 9        | Yellowstone National Park                         | 4      | RALU      | 12    | 492084      | 4954967  |
|                | 74       | Blackfoot Lake, 1 mile S of Tongue Mountain       | 4      | RALU      | 12    | 282954      | 5340530  |
|                | 75       | East Front B                                      | 1      | RALU      | 12    | 360238      | 5326462  |
|                | 76       | East Front A                                      | 1      | RALU      | 12    | 360476      | 5326225  |
|                | 77       | Pond, 5.8 miles NW of Fawn Peak                   | 3      | RALU      | 12    | 293121      | 5233861  |
|                | 78       | Little Belts                                      | 5      | RALU      | 12    | 527967      | 5188993  |
|                | 79       | Big Belts                                         | 4      | RALU      | 12    | 484870      | 5145610  |
|                | 80       | Elkhorns                                          | 5      | RALU      | 12    | 434055      | 5126965  |
|                | 81       | Crazys                                            | 3      | RALU      | 12    | 544668      | 5118856  |
|                | 82<br>83 | 4.9 miles WNW of Beaverhead Mountain<br>Bow Basin | 3<br>2 | RALU      | 12    | 307138      | 5099978  |
|                | 0.       |                                                   | 2      | NALO<br>D | 12    | 413003      | J04J70J  |
| Nevada         | 25       | Farrington Ranch                                  | 3      | RALU      | 11    | 456350      | 4251962  |
|                | 26       | Upper Corral Pond                                 | 1      | RALU      | 11    | 454902      | 4253812  |
|                | 27       | Green Mountain Creek                              | 2      | RALU      | 11    | 627358      | 4469328  |
|                | 28       | Maggie Creek                                      | 1      | RALU      | 11    | 583977      | 4550128  |
|                | 29       | Sheep Creek Spinigs                               | 1      | RALU      | 11    | 596907      | 4579929  |
|                | 30<br>21 | N Fork Humbolt                                    | 1      | RALU      | 11    | 527819      | 4594105  |
|                | 27       | N FOIK HUIIDOIL<br>Telephone Creek                | 1      | RALU      | 11    | 607807      | 4000290  |
|                | 32       | Sand Creek                                        | 1      | PALLI     | 11    | 602356      | 4041151  |
|                | 34       | Winter Creek Pond                                 | 1      | RALLI     | 11    | 562325      | 4625775  |
|                | 35       | Flectric Fence Pond                               | 1      | RALLI     | 11    | 590302      | 4603866  |
|                | 68       | Pole Creek Big Pond                               | 5      | RALLO     | 11    | 659485      | 4640193  |
|                | 69       | Tennessee Gulch                                   | 4      | RALU      | 11    | 612846      | 4628119  |
|                | 70       | Coleman Creek Ponds                               | 4      | RALU      | 11    | 605337      | 4620405  |
|                | 71       | South Fork Green Mountain Creek                   | 5      | RALU      | 11    | 627741      | 4467650  |
|                | 72       | Warners                                           | 3      | RALU      | 11    | 456847      | 4300828  |
|                | 73       | Pasture A transect                                | 3      | RALU      | 11    | 456694      | 4294723  |
| Oregon         | 36       | Sun River                                         | 1      | RAPR      | 10    | 625894      | 4858045  |
| U              | 37       | Waldo Lake                                        | 1      | RACA      | 10    | 540156      | 4860672  |
|                | 38       | Blue Mountains                                    | 1      | RALU      | 11    | 420500      | 4927679  |
|                | 53       | Janet's Pond                                      | 4      | RALU      | 11    | 466176      | 5042676  |
|                | 54       | Little Greenhorn                                  | 2      | RALU      | 11    | 383862      | 4948877  |
|                | 55       | N Fork Burnt River                                | 2      | RALU      | 11    | 392792      | 4946872  |
|                | 56       | Pine Creek Pond                                   | 3      | RALU      | 11    | 427045      | 4932116  |
|                | 57       | North Fork Crooked River                          | 2      | RALU      | 10    | 732898      | 4911477  |
|                | 58       | Camp Creek                                        | 3      | RALU      | 10    | 729715      | 4882105  |
|                | 59       | Kingsbury Gulch                                   | 10     | RALU      | 11    | 405774      | 4847084  |
|                | 60       | Dry Creek                                         | 3      | RALU      | 11    | 440995      | 4816975  |
|                | 61       | Mud Creek                                         | 7      | RALU      | 11    | 348319      | 4743846  |
|                | 62       | Lily Lake                                         | 1      | RALU      | 11    | 363840      | 4733677  |
|                | 63       | Parsnip Creek                                     | 3      | RALU      | 10    | 745866      | 4676573  |
|                | 87       | Camas                                             | 4      | RAPR      | 10    | 613043      | 4999106  |
|                | 88       | Hosmer Lake                                       | 6      | RAPR      | 10    | 597653      | 4868236  |
|                | 89       | Unnamed Marsh, Mud Lake                           | 3      | RAPR      | 10    | 586790      | 4865165  |

| Appendix A (conti | inued)   |                                            |     |         |                 |         |          |
|-------------------|----------|--------------------------------------------|-----|---------|-----------------|---------|----------|
| State/province    | Site no. | Site name/ description                     | No. | Species | UTM coordinates |         |          |
|                   |          |                                            |     |         | Zone            | Easting | Northing |
|                   | 90       | Lake Aspen                                 | 3   | RAPR    | 10              | 624825  | 4859984  |
|                   | 91       | Muskrat Lake                               | 2   | RAPR    | 10              | 588352  | 4857034  |
|                   | 92       | CRBF                                       | 3   | RAPR    | 10              | 624846  | 4856193  |
|                   | 93       | Casey Tract North                          | 6   | RAPR    | 10              | 622965  | 4847791  |
|                   | 94       | Gold Lake Pond                             | 3   | RAPR    | 10              | 577652  | 4832065  |
|                   | 95       | Jack Creek                                 | 3   | RAPR    | 10              | 612882  | 4787487  |
|                   | 96       | Crane Creek                                | 8   | RAPR    | 10              | 575443  | 4723125  |
|                   | 97       | Wood                                       | 4   | RAPR    | 10              | 584663  | 4718912  |
|                   | 98       | Buck                                       | 3   | RAPR    | 10              | 566192  | 4679710  |
| Utah              | 12       | Heber Provo River                          | 5   | RALU    | 12              | 468966  | 4492355  |
|                   | 13       | Springville Hatchery                       | 4   | RALU    | 12              | 450330  | 4446212  |
|                   | 14       | Mona                                       | 4   | RALU    | 12              | 415859  | 4409508  |
|                   | 15       | Sanpete County                             | 3   | RALU    | 12              | 457112  | 4390675  |
|                   | 16       | S Tule Valley                              | 6   | RALU    | 12              | 284367  | 4350987  |
|                   | 17       | N Tule Valley                              | 4   | RALU    | 12              | 284470  | 4354694  |
|                   | 18       | Tule Valley                                | 5   | RALU    | 12              | 284418  | 4352840  |
|                   | 19       | Coyote Springs                             | 4   | RALU    | 12              | 286215  | 4365754  |
|                   | 20       | Bishop-Foote                               | 5   | RALU    | 12              | 250217  | 4363117  |
|                   | 21       | Gandy                                      | 5   | RALU    | 12              | 250455  | 4370521  |
|                   | 22       | Leland-Harris                              | 6   | RALU    | 12              | 255051  | 4379631  |
|                   | 23       | Miller Springs                             | 5   | RALU    | 12              | 258087  | 4385091  |
|                   | 24       | Deep Creek Mountains                       | 10  | RALU    | 12              | 248040  | 4428020  |
| Washington        | 1        | North Cascades National Park               | 3   | RALU    | 10              | 647745  | 5373588  |
|                   | 39       | Olympic National Park                      | 1   | RAAU    | 10              | 376312  | 5347067  |
|                   | 51       | Eden Valley                                | 2   | RALU    | 11              | 484769  | 5197827  |
|                   | 84       | Kiser Prop                                 | 4   | RAPR    | 10              | 498451  | 5195473  |
|                   | 85       | Beaver Creek                               | 4   | RAPR    | 10              | 507241  | 5193011  |
|                   | 86       | Trout Lake                                 | 4   | RAPR    | 10              | 611349  | 5096231  |
| Wyoming           | 10       | Teton National Park                        | 5   | RALU    | 12              | 540256  | 4844012  |
|                   | 11       | Bighorn Mountains                          | 8   | RALU    | 13              | 302100  | 4958003  |
| Yukon Territory   | 40       | Birch Pond on N shore, W Arm, Bennett Lake | 1   | RALU    | 8               | 499071  | 6660482  |
|                   | 41       | Pond on Partridge River tributary          | 1   | RALU    | 8               | 488850  | 6653081  |

# No. is the number of individuals included in the analysis from the given site; RALU = *Rana luteiventris*; RAPR = *R. pretiosa*; RAAU = *R. aurora*; RACA = *R. cascadae*. The map datum was NAD27 for all coordinates except sites 49–52, 65, 72, and 73 for which it was NAD83. Site numbers correspond to those used in Figs. 1 and 2.

### Appendix **B**

Haplotypes, sites where observed, number of individuals with each haplotype, and GenBank accession numbers for *Rana luteiventris*, *R. pretiosa*, and outgroups

| Haplotype | Species | Sites (no. individs. with haplotype)              | Accession no.            |
|-----------|---------|---------------------------------------------------|--------------------------|
| h1        | RALU    | 12(3), 14 (2), 15(3), 16(3), 18(4), 19(2), 20,(4) | AY016650                 |
| h2        | RALU    | 12(2)                                             | AY016680                 |
| h3        | RALU    | 19(1)                                             | AY016684                 |
| h4        | RALU    | 13(3)                                             | AY016663                 |
| h5        | RALU    | 13(1)                                             | AY016655                 |
| h6        | RALU    | 18(1)                                             | AY016668                 |
| h7        | RALU    | 19(1), 20(1), 22(4), 23(1)                        | AY016653                 |
| h8        | RALU    | 14(2), 22(1), 23(4)                               | AY016656                 |
| h9        | RALU    | 22(1)                                             | AY016667                 |
| h10       | RALU    | 16(3), 17(3)                                      | AY016666                 |
| h11       | RALU    | 21(5)                                             | AY016662                 |
| h12       | RALU    | 17(1)                                             | AY016689                 |
| h13       | RALU    | 24(5)                                             | AY016654                 |
| h14       | RALU    | 24(2)                                             | AY016652                 |
|           |         |                                                   | (continued on next page) |

## Appendix B (continued)

| Haplotype | Species | Sites (no. individs. with haplotype)                          | Accession no. |
|-----------|---------|---------------------------------------------------------------|---------------|
| h15       | RALU    | 24(2)                                                         | AY016649      |
| h16       | RALU    | 24(1)                                                         | AY016673      |
| h17       | RALU    | 30(1), 32(1), 64(1), 69(2)                                    | AY016683      |
| h18       | RALU    | 28(1)                                                         | AY016688      |
| h19       | RALLI   | 27(1) 71(3)                                                   | AY016675      |
| h20       | RALLI   | 25(3), 26(1), 72(3), 73(3)                                    | AY016674      |
| h21       | RALLI   | 27(1) 71(2)                                                   | AY016682      |
| h22       | RALLI   | 31(1)                                                         | AY016671      |
| h23       | RALLI   | 35(1) 70(4)                                                   | AY016685      |
| h24       | RALLI   | 33(1), 69(2)                                                  | AY016677      |
| h25       | RALLI   | 29(1)                                                         | AY016679      |
| h26       | RALLI   | 34(1)                                                         | AY016678      |
| h27       | RALU    | 2(1), 3(5), 4(3), 5(1), 6(1), 7(3), 9(1), 10(3), 74(4),       | AY016658      |
| 1127      | iu illo | 76(1) $77(3)$ $78(5)$ $79(4)$ $80(3)$ $81(3)$ $82(3)$ $83(2)$ | morooso       |
| h28       | RALU    | 10(1)                                                         | AY016687      |
| h29       | RALLI   | 10(1)                                                         | AY016676      |
| h30       | RALLI   | 9(1)                                                          | AY016661      |
| h31       | RALLI   | 9(1)                                                          | AY016669      |
| h32       | RALU    | 9(1)<br>9(1)                                                  | AY016664      |
| h32       | RALLI   | 2(1)  4(1)                                                    | AV016659      |
| h34       | RALU    | 8(1)                                                          | AY016672      |
| h35       | RALU    | 1(3)                                                          | AY016660      |
| h36       | RALU    | 38(1), 55(2), 56(1), 59(1)                                    | AY016670      |
| h37       | RALU    | 6(1)                                                          | AY016665      |
| h38       | RALU    | 6(2), 80(2)                                                   | AY016686      |
| h39       | RALU    | 11(6)                                                         | AY016651      |
| h40       | RALU    | 11(1)                                                         | AY016681      |
| h41       | RALU    | 11(1)                                                         | AY016657      |
| h42       | RALU    | 54(2), 56(2)                                                  | EU708851      |
| h43       | RALU    | 61(1)                                                         | EU708852      |
| h44       | RALU    | 61(3)                                                         | EU708853      |
| h45       | RALU    | 61(1)                                                         | EU708854      |
| h46       | RALU    | 61(1)                                                         | EU708855      |
| h47       | RALU    | 61(1)                                                         | EU708856      |
| h48       | RALU    | 40(1), 41(1), 42(1), 43(1), 44(1), 46(1), 47,(1),             | EU708857      |
|           |         | 48(1), 49(2), 50(1), 57(2), 58(2)                             |               |
| h49       | RALU    | 58(1)                                                         | EU708858      |
| h50       | RALU    | 53(2)                                                         | EU708859      |
| h51       | RALU    | 53(2)                                                         | EU708860      |
| h52       | RALU    | 50(1), 51(2), 52(2)                                           | EU708861      |
| h53       | RALU    | 75(1)                                                         | EU708862      |
| h54       | RALU    | 45(1)                                                         | EU708863      |
| h55       | RALU    | 59(1)                                                         | EU708864      |
| h56       | RALU    | 59(8), 62(1)                                                  | EU708865      |
| h57       | RALU    | 60(3)                                                         | EU708866      |
| h58       | RALU    | 63(3)                                                         | EU708867      |
| h59       | RALU    | 64(2), 66(1)                                                  | EU708868      |
| h60       | RALU    | 65(2), 66(1), 67(5)                                           | EU708869      |
| h61       | RALU    | 65(1), 66(1)                                                  | EU708870      |
| h62       | RALU    | 68(5)                                                         | EU708871      |
| h63       | RAPR    | 84(4), 85(4)                                                  | EU708872      |
| h64       | RAPR    | 86(4)                                                         | EU708873      |
| h65       | RAPR    | 87(4)                                                         | EU708874      |
| h66       | RAPR    | 36(1), 88(6), 89(3), 90(3), 91(2), 92(3), 93,(6), 94(3)       | EU708875      |
| h67       | RAPR    | 95(3), 96(8), 97(4)                                           | EU708876      |
| h68       | RAPR    | 98(3)                                                         | EU708877      |
| h69       | RACA    | 3/(1)                                                         | EU708878      |
| h70       | RAAU    | 39(1)                                                         | EU708879      |

RALU = *Rana luteiventris*; RAPR = *R. pretiosa*; RAAU = *R. aurora*; RACA = *R. cascadae*. Haplotype numbers correspond to those used in Fig. 2. Haplotypes 1–41 are the same as in Bos and Sites (2001).

#### References

- Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automatic Control 19, 716–723.
- Allendorf, F.W., Luikart, G., 2007. Conservation and the Genetics of Populations. Blackwell Publishing, Oxford.
- Avise, J.C., 2000. Phylogeography. Harvard Univ. Press, Cambrdige, MA.
- Berger, L., Speare, R., Daszak, P., Green, D.E., Cunningham, A.A., Goggin, C.L., Slocombe, R., Ragan, M.A., Hyatt, A.D., McDonald, K.R., Hines, H.B., Lips, K.R., Marantelli, G., Parkes, H., 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. USA. 95, 9031–9036.
- Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K., Das, I., 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155.
- Bos, D.H., Sites Jr, J.W., 2001. Phylogeography and conservation genetics of the Colombia spotted frog (*Rana luteiventris*; Amphibia, Ranidae). Mol. Ecol. 10, 1499–1513.
- Brunsfeld, S.J., Sullivan, J., Soltis, D.E., Soltis, P.S., 2001. Comparative phylogeography of northwestern North America: a synthesis. In: Silvertown, J., Antonovics, J. (Eds.), Integrating Ecology and Evolution in a Spatial Context. Blackwell Publishing, Williston, VT, pp. 319–339.
- Bürger, R., Lynch, M., 1995. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49, 151–163.
- Carstens, B.C., Stevenson, A.L., Degenhardt, J.D., Sullivan, J., 2004. Testing nested phylogenetic and phylogeographic hypotheses in the *Plethodon vandykei* species group. Syst. Biol. 53, 781–792.
- Carstens, B.C., Brunsfeld, S.J., Demboski, J.R., Good, J.M., Sullivan, J., 2005. Investigating the evolutionary history of the Pacific Northwest mesic forest ecosystem: hypothesis testing within a comparative phylogeographic framework. Evolution 59, 1639–1652.
- Conroy, C.J., Cook, J.A., 2000. Phylogeography of a post-glacial colonizer: Microtus longicaudus (Rodentia: Muridae). Mol. Ecol. 9, 165–175.
- Corn, P.S., 1994. What we know and don't know about amphibian declines in the west. In: Covington, W.W., DeBano, L.F. (Eds.), Sustainable Ecological Systems: Implementing an Ecological Approach to Land Management. U.S.D.A. Forest Service, General Technical Report, RM-247, Fort Collins, CO, pp. 59–67.
- Corkran, C.C., Thoms, C., 1996. Amphibians of Oregon, Washington, and British Columbia.. Lone Pine Publishing, Vancouver, BC.
- Crow, J.F., Kimura, M., 1970. An Introduction to Population Genetics Theory. Burgess Publishing, Minneapolis, MN.
- Demboski, J.R., Cook, J.A., 2001. Phylogeography of the dusky shrew, Sorex monticolus (Insectivora, Soricidae): insight into deep and shallow history in northwestern North America. Mol. Ecol. 10, 1227–1240.
- Drost, C.A., Fellers, G.M., 1996. Collapse of a regional frog fauna in the Yosemite area of the California Sierra Nevada, USA. Conserv. Biol. 10, 414–425.
- Endler, J.A., 1977. Geographic Variation, Speciation, and Clines. Princeton Univ. Press, Princeton, New Jersey.
- Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
- Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinformatics Online 1, 47–50.
- Fu, Y.-X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.
- Funk, W.C., Blouin, M.S., Corn, P.S., Maxell, B.A., Pilliod, D.S., Amish, S., Allendorf, F.W., 2005a. Population structure of Columbia spotted frogs (*Rana luteiventris*) is strongly affected by the landscape. Mol. Ecol. 14, 483–496.
- Funk, W.C., Greene, A.E., Corn, P.S., Allendorf, F.W., 2005b. High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biol. Lett. 1, 13– 16.
- Funk, W.C., Forsman, E.D., Mullins, T.D., Haig, S.M., 2008. and dispersal among spotted owl (*Strix occidentalis*) subspecies. Evol. Appl. 1, 161–171.
- Graham, A., 1999. Late Cretaceous and Cenozoic History of North American Vegetation. Oxford Univ. Press, New York.
- Green, D.M., Sharbel, T.F., Kearsley, J., Kaiser, H., 1996. Postglacial range fluctuation, genetic subdivision and speciation in the western North American spotted frog complex, *Rana pretiosa*. Evolution 50, 374–390.
- Green, D.M., Kaiser, H., Sharbel, T.F., Kearsley, J., McAllister, K.R., 1997. Cryptic species of spotted frogs, *Rana pretiosa* complex, in western North America. Copeia 1997, 1–8.
- Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
- Harpending, R.C., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biol. 66, 591–600.
- Hayes, M.P., Jennings, M.R., 1986. Decline of ranid frog species in western North America: are bullfrogs (*Rana catesbeiana*) responsible? J. Herpetol. 20, 490–509.
- Hayes, M.P., Engler, J. D., Haycock, R.D., Knopp, D.H., Leonard, W.P., McAllister, K.R., Todd, L.L., 1997. Status of the Oregon spottedfrog (*Rana pretiosa*) across its geographic range. Oregon Chapter of the Wildlife Society, Corvallis, OR.
- Hillis, D.M., Wilcox, T.P., 2005. Phylogeny of the new world true frogs (*Rana*). Mol. Phylogenet. Evol. 34, 299–314.
- Irwin, D.E., 2002. Phylogeographic breaks without geographic barriers to gene flow. Evolution 56, 2383–2394.

- IUCN, Conservation International, and NatureServe. 2006. Global Amphibian Assessment. Available from: <a href="http://www.globalamphibians.org">http://www.globalamphibians.org</a>. Downloaded on 16 March 2008.
- Janzen, F.J., Krenz, J.G., Haselkorn, T.S., Brodie Jr, E.D., Brodie, E.D.III, 2002. Molecular phylogeography of common garter snakes (*Thamnophis sirtalis*) in western North America: implications for regional historical forces. Mol. Ecol. 11, 1739– 1751.
- Matocq, M.D., 2002. Phylogeographical structure and regional history of the duskyfooted woodrat, *Neotoma fuscipes*. Mol. Ecol. 11, 229–242.
- McAllister, K.R., Leonard, W.P., Storm, R.M., 1993. Spotted frog (*Rana pretiosa*) surveys in the Puget Trough of Washington, 1989–1991. Northwest. Nat. 74, 10–15.
- Miller, M.P., Haig, S.M., Wagner, R.S., 2005. Conflicting patterns of genetic structure produced by nuclear and mitochondrial markers in the Oregon slender salamander (*Batrachoseps wrighti*): implications for conservation efforts and species management. Conserv. Genet. 6, 275–287.
- Miller, M.P., Bellinger, M.R., Forsman, E.D., Haig, S.M., 2006a. Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the red tree vole (*Phenacomys longicaudis*) in the Pacific northwestern United States. Mol. Ecol. 15, 145–159.
- Miller, M.P., Haig, S.M., Wagner, R.S., 2006b. Phylogeography and spatial genetic structure of the southern torrent salamander: implications for conservation and management. J. Hered. 97, 561–570.
- Monsen, K.J., Blouin, M.S., 2003. Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance. Mol. Ecol. 12, 3275–3286.
- Moritz, C., 1994. Defining "Evolutionarily Significant Units" for conservation. Trends Ecol. Evol. 9, 373–375.
- Nielson, M., Lohman, K., Sullivan, J., 2001. Phylogeography of the tailed frog (Ascaphus truei): implications for the biogeography of the Pacific Northwest. Evolution 55, 147–160.
- Nielson, M., Lohman, K., Daugherty, C.H., Allendorf, F.W., Knudsen, K.L., Sullivan, J., 2006. Allozyme and mitochondrial DNA variation in the tailed frog (Anura: Ascaphus): the influence of geography and gene flow. Herpetologica 62, 235–258.
- Pearl, C.A., Hayes, M.P., 2005. *Rana pretiosa*, Oregon spotted frog. In: Lannoo, M.J. (Ed.), Amphibian Declines: The Conservation Status of United States Species. Univ. California Press, Berkeley, CA, pp. 577–580.
- Pilliod, D.S., Peterson, C.R., Ritson, P.I., 2002. Seasonal migration of Columbia spotted frogs (*Rana luteiventris*) among complementary resources in a high mountain basin. Can. J. Zool. 80, 1849–1862.
- Piry, S., Luikart, G., Cornuet, J.-M., 1999. Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503.
- Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P.L., Foster, P.N., La Marca, E., Masters, K.L., Merino-Viteri, A., Puschendorf, R., Ron, S.R., Sanchez-Azofeifa, G.A., Still, C.J., Young, B.E., 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161– 167.
- Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
- Reaser, J.K., 1997. Amphibian declines: conservation science and adaptive management. Doctoral dissertation. Stanford Univ., Palo Alto, CA.
- Reaser, J.K., Pilliod, D.S., 2005. Rana luteiventris Columbia spotted frog. In: Lannoo, M.J. (Ed.), Amphibian Declines: The Conservation Status of United States Species. Univ. California Press, Berkeley, CA, pp. 559–563.
- Recuero, E., Martínez-Solano, Í., Parra-Olea, G., García-París, M., 2006. Phylogeography of *Pseudacris regilla* (Anura: Hylidae) in western North America, with a proposal for a new taxonomic rearrangement. Mol. Phylogenet. Evol. 39, 293–304.
- Remington, C.L., 1968. Suture-zones of hybrid interaction between recently joined biotas. In: Dobzhansky, T., Hecht, M.K., Steere, W.C. (Eds.), Evolutionary Biology. Plenum, New York, pp. 321–428.
- Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Shaffer, H.B., Fellers, G.M., Voss, S.R., Oliver, J.C., Pauly, G.B., 2004. Species boundaries, phylogeography and conservation genetics of the red-legged frog (*Rana aurora | draytonii*) complex. Mol. Ecol. 13, 2667–2677.
- Soltis, D.E., Gitzendanner, M.A., Strenge, D.D., Soltis, P.S., 1997. Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. Plant Syst. Evol. 206, 353–373.
- Spellman, G.M., Riddle, B., Klicka, J., 2007. Phylogeography of the mountain chickadee (*Poecile gambeli*): diversification, introgression, and expansion in response to Quaternary climate change. Mol. Ecol. 16, 1055–1068.
- Spinks, P.Q., Shaffer, H.B., 2005. Range-wide molecular analysis of the western pond turtle (*Emys marmorata*): cryptic variation, isolation by distance, and their conservation implications. Mol. Ecol. 14, 2047–2064.
- Spruell, P., Hemmingsen, A.R., Howell, P.J., Kanda, N., Allendorf, F.W., 2003. Conservation genetics of bull trout: geographic distribution of variation at microsatellite loci. Conserv. Genet. 4, 17–29.
- Steele, C.A., Carstens, B.C., Storfer, A., Sullivan, J., 2005. Testing hypotheses of speciation timing in *Dicamptodon copei* and *Dicamptodon aterrimus* (Caudata: Dicamptodontidae). Mol. Phylogenet. Evol. 36, 90–100.
- Steele, C.A., Storfer, A., 2006. Coalescent-based hypothesis testing supports multiple Pleistocene refugia in the Pacific Northwest for the Pacific giant salamander (*Dicamptodon tenebrosus*). Mol. Ecol. 15, 2477–2487.

- Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L., Waller, R.W., 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786.
- Sullivan, J., Abdo, Z., Joyce, P., Swofford, D.L., 2005. Evaluating the performance of a successive-approximations approach to parameter optimization in maximumlikelihood phylogeny estimation. Mol. Biol. Evol. 22, 1386–1392.
- Swenson, N.G., Howard, D.J., 2005. Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. Am. Nat. 166, 581–591.
- Swofford, D.L., 2000. PAUP\*: Phylogenetic Analysis Using Parsimony (\* and Other Methods). Sinauer, Sunderland, Massachusetts.
- Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
- USFWS (US Fish and Wildlife Service), 1993. Endangered and threatened wildlife and plants; finding on petition to list the spotted frog. Fed. Regist. 58, 27260–27263.
- USFWS (US Fish and Wildlife Service), 1996. Endangered and threatened wildlife and plants; determination of threatened status of the California red-legged frog. Fed. Regist. 61, 25813–25833.

- USFWS (US Fish and Wildlife Service), 1997. Endangered and threatened species; review of plant and animal taxa; proposed rule. Fed. Regist. 62, 49398– 49411.
- USFWS (US Fish and Wildlife Service), 1999. Endangered and threatened wildlife and plants: proposed endangered status for the southern California distinct vertebrate population segment of the mountain yellow-legged frog. Fed. Regist. 64, 71714–71722.
- USFWS (US Fish and Wildlife Service), 2004. Species assessment and listing priority assignment form, *Rana luteiventris*, Columbia spotted frog (Great Basin DPS).
- Werner, J.K., Maxell, B.A., Hendricks, P., Flath, D.L., 2004. Amphibians and Reptiles of Montana. Mountain Press Publishing Company, Missoula, MT.
- Whiteley, A.R., Spruell, P., Allendorf, F.W., 2006. Can common species provide valuable information for conservation? Mol. Ecol. 15, 2767–2786.
- Zamudio, K.R., Jones, K.B., Ward, R.H., 1997. Molecular systematics of short-horned lizards: biogeography and taxonomy of a widespread species complex. Syst. Biol. 46, 284–305.