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Abstract: 

Chemical signaling is known to be an important communication mechanism for 

amphibians. However, very few studies have directly investigated chemical signaling in 

anuran groups (frogs and toads), particularly adult anurans. Previous work has focused 

primarily on salamander and larval anuran behavioral responses. Additionally, 

chemoreceptor (CR) genes have only been identified for Xenopus species with no previous 

identifications for any other adult anuran species. Here, I examine the evolutionary and 

functional implications of northern leopard frog (Lithobates pipiens) CRs, identified 

through collaboration, by conducting a phylogenetic analysis for each CR type identified 

using a Maximum Likelihood approach (Chapter 1). I incorporated amino acid CR 

sequences spanning aquatic, semiaquatic, and terrestrial vertebrate species, and the 

resulting trees indicate split divergence patterns across CR types. More specifically, 

olfactory receptors (ORs) and trace amine associated receptors (TAARs) appear to be most 

closely related to transitional vertebrate and terrestrial species’ orthologs, and 

vomeronasal receptors (VRs Types I and II) appear to be most closely related to 

transitional vertebrate and aquatic vertebrate orthologs, hinting at both volatile and 

aquatic (water soluble and nonvolatile) detection of chemicals.  

In this study, I also investigate terrestrial, sex-biased anuran behavioral responses 

to conspecific chemical cues in adult L. pipiens, comparing time spent on cue and non-cue 

sides of an experimental terrarium (Chapter 2) to expand on current knowledge of 

chemical detection in a declining, North American species. Results show nuanced response 

profiles for males and females, based on familiarity (odors of individuals housed together 

and those that were housed in separate enclosures) and same-sex vs. opposite-sex cues.  
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Females were more responsive overall (P <0.005), investigating unfamiliar, opposite sex 

and familiar, same-sex odors. Though not statistically significant (P=0.40), the data (see 

Figure 7.) suggest that male investigation of cue and non-cue sides differed slightly for 

familiar, same-sex conspecifics. Neither sex appeared to respond to unfamiliar, same-sex 

odors. Intuitively, ecological benefits associated with familiar odor detection and mate 

localization are likely responsible for these trends.  

Collectively, my results expose CR divergence patterns across aquatic, semiaquatic, 

and terrestrial species and help elucidate conspecific ligand functional roles that influence 

L. pipiens behavior.  
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Chapter 1:  Identification and Phylogenetic Analysis of Putative Chemosensory 

Receptors in Adult Northern Leopard Frog (Lithobates pipiens) Olfactory Epithelium 

 

Abstract: 

Animals rely on their sense of smell to detect chemical messages in their 

environment. This chemical language informs individuals on the presence of food/prey, 

potential mates, suitable habitats, and predators. G-protein coupled receptors, which bind 

chemical cues and transmit the message to olfactory neurons, are the basis of olfaction, and 

few studies have identified full-length chemoreceptor proteins in adult anuran olfactory 

epithelium. Here we performed an RNAseq (i.e., sequencing of transcriptome-wide 

transcripts) of Northern Leopard Frog olfactory epithelium to identify four types of 

candidate chemosensory receptors: olfactory receptors (ORs), vomeronasal type 1 and 

type 2 receptors (V1Rs and V2Rs) and trace amine associated receptors (TAARs). By 

comparing the identified receptors with other vertebrate orthologs via phylogenetic 

analysis, we elucidated the evolutionary trajectory of vertebrate chemoreception across 

terrestrial and aquatic groups. Finally, we identified the transcripts putatively coding for 

chemosensory receptor accessory proteins Gαolf and transient receptor potential channel 

2 (trpc2). 

 

Key words: amphibian, olfactory epithelium, G-protein, vomeronasal organ, olfactory 

receptor, pheromone receptor  

 

Introduction:                                      
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  Chemical signaling is a well-studied aspect of animal communication and has been 

shown to impact numerous facets of reproduction and survival (Wyatt 2003; 2010). Within 

this context, amphibians present a unique and interesting case of chemical signaling due to 

their biphase life history where they likely retain the ability to sense waterborne, volatile, 

and nonvolatile odorants (Belanger and Corkum 2009; Woodley 2014; Woodley 2015). For 

instance, a variety of salamanders and frogs have been observed producing water-soluble 

and nonvolatile pheromones (Belanger and Corkum 2009; Houck 2009; Wyatt 2003; 

Woodley 2010; Cummins and Bowie 2012), and other amphibians are known to emit 

volatile constituents; which, intuitively, may act as a form of chemical signaling (Poth et al. 

2012; Poth et al. 2013; Starnberger et al. 2013). Behavioral assays have also demonstrated 

amphibian use of olfaction to sense both volatile and waterborne cues from various sources 

(Mason et al. 1998; Belanger and Corkum 2009).  Although the vast majority of amphibian 

chemical sensing research has thus far targeted salamander clades; there is growing 

recognition of the importance of chemoreception in other amphibian groups, even for some 

anuran amphibians previously presumed to rely exclusively on auditory signaling 

(Kiemnec 2009; Belanger and Corkum 2009; Poth et al. 2012; Woodley 2015).  

 Although these studies have helped elucidate the chemical cues used by amphibians 

and their associated behavioral responses, very few studies have attempted to examine the 

molecular underpinnings of olfaction, especially for anuran groups (Mezler et al. 2001). A 

molecular-level understanding of how amphibian chemoreception functions, across clades, 

could drastically improve our knowledge of the evolution and functional importance of 

amphibian chemoreception. Thus, here we identify candidate chemoreceptor (CR) genes 

within the olfactory epithelium of the northern leopard frog (Lithobates pipiens) and 
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conduct phylogenetic analyses to explore the evolutionary trajectories of these proteins 

across vertebrate groups and generate predictions regarding possible ligand groups.  We 

aim to provide a platform for future research attempts to deorphan anuran CRs. The 

northern leopard frog, L. pipiens, was selected as our focal species because it inhabits both 

terrestrial and aquatic environments (MacAllister et al. 1999; Kendell 2002), which makes 

the odorant space it can potentially sense quite large. Also, previous studies indicate a 

variety of olfactory responses by both southern and northern leopard frogs (L. pipiens and 

Lithobates sphenocephalus) during various stages of development (Shinn and Dole 1978; 

Glennemeier and Denver 2002; Johnson et al. 2003).  

Broadly, the molecular basis of olfaction is the interaction between a chemoreceptor 

and its cognate ligand or set of ligands (Buck and Axel 1991;1992). The binding event of a 

compound to the CR initiates a series of Guanine nucleotide binding protein (G-protein)-

mediated signal transduction cascades, leading to a cation influx via cyclic nucleotide-gated 

ion channels and Ca2+ activated Cl- channels (Touhara et al. 2006). The end result is a 

depolarization of the neuron and transmission of information to the brain.  

In vertebrates, there are three primary types of receptors that detect odorants 

(Touhara and Vosshall 2009). These are olfactory receptors (ORs), and vomeronasal 

receptors, type 1 and type 2 (V1Rs and V2R respectively), and each belong to a G protein-

coupled receptor (GPCR) super family of integral membrane proteins (Touhara and 

Vosshall 2009). There are also a few trace amine associated receptors (TAARs) thought to 

be specific for amine chemical cues (Borowsky et al. 2001). Despite extraordinary sequence 

diversity, all are presumed to have a similar tertiary structure (Freitag et al. 1998; Niimura 

2013). The binding specificities of CRs can vary considerably. For example, an individual CR 
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can bind multiple different odorants (i.e. exhibit broadly tuned binding) and an individual 

odorant can be bound by multiple different receptors (Malnic et al. 1999; Grus and Zhang 

2008; Hashiguchi et al. 2008; Spehr and Munger 2009). In contrast, pheromone receptors 

tend to be narrowly tuned to an individual pheromone (Grus and Zhang 2008; Touhara and 

Vosshall 2009).  

As GPCRs, ORs are coexpressed with specific G-proteins that serve to mediate the 

odorant signaling cascade. Current evidence suggests that ORs are typically coexpressed 

with Gαs/Gαolf proteins; V1Rs with Gαi2 proteins, and V2Rs with Gαo proteins (Dulac 

2000; Kajiya et al. 2001; Kiemnec-Tyburczy et al. 2011). V1R and V2R expressing sensory 

neurons are also known to depend on the phospholipase C- and the diacylglycerol-

mediated transduction pathway that ultimately leads to the activation of the canonical 

Transient receptor potential cation channel, subfamily C, member 2 (trpc2) protein 

(Inamura et al. 1997; Lucas et al. 2003; Liberles 2014). The trpc2 is a cation channel critical 

for signal transduction in the VNO of rodents, and trpc2 specifically is almost ubiquitous 

across vertebrate species (Liman 1999; Leypold et al. 2002; Stowers et al. 2002; Kiemnec-

Tyburczy et al. 2011). This suggests a highly conserved functional role in odorant 

detection.  

For terrestrial vertebrates, evidence suggests that both ORs and TAARs are broadly 

tuned receptors, while V1Rs and V2Rs are more narrowly tuned binders, as they appear to 

be more divergent  (Grus and Zhang 2008; Hashiguchi et al. 2008; Spehr and Munger 

2009). Additionally, a variety of small volatile odorants have been shown to bind V1Rs in 

mammals, while V2Rs have been hypothesized to bind larger water-soluble molecules; 

specifically peptides and proteins (e.g. ESP1 in mice; Boschat et al. 2002; Leinders-Zufall et 
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al. 2004; Spehr and Munger 2009; Haga et al. 2010; Wyatt 2010; Kiemnec-Tyburczy et al. 

2011). However, this trend does not appear to hold for squamate reptiles (Brykczynska et 

al. 2013), since they are known to detect volatile odorants through the vomeronasal system 

(VNS) but their V2R repertoire is much more expansive than their V1R repertoire. Whether 

or not this hypothesis is supported across amphibian clades remains unknown, as even 

primarily terrestrial amphibian species respond to waterborne chemical cues through the 

VNS (Kiemnec-Tyburczy et al. 2011).  

Additionally, at least for one salamander species, the red-legged salamander 

(Plethodon Shermani), it appears that the majority of known V2R receptor proteins more 

closely resemble African Clawed Frog (Xenopus laevis) rather than zebrafish (Danio rerio) 

receptors, suggesting that the divergence of CR proteins dates back to a common tetrapod 

ancestor that may have begun to adopt a partially terrestrial lifestyle (Kiemnec-Tyburczy et 

al. 2011). Again, it is presently unknown if this conservation pattern holds for other 

amphibian species. If validated, as Kiemnec-Tyburczy et al. suggested, these V2R trends 

may accompany adaptations related to a transitional lifestyle for amphibians (2011). 

Importantly, the OR, V1R, V2R, and TAAR chemoreceptor-coding scheme allows a 

limited number of receptors to cover a vast odorant landscape, which makes inferring the 

ligand specificities of each receptor difficult across animal groups. Furthermore, despite 

great strides made in the identification of olfactory receptor genes through the advent of 

genome sequencing (Niimura and Nei 2006; Shi and Zhang 2007; Nei et al. 2008), few CR-

ligand pairs have been uncovered, and, to our knowledge, none have been identified for 

amphibians (Woodley 2010). Still, increasing the number of identified chemoreceptor 

sequences for different amphibian species, especially anuran species--considering the 
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current gap in the literature, can help generate evolutionary inferences based on known 

orthologs, hinting at trace chemoreceptor divergence and possible function. A comparison 

can allow for indirect ligand-class inferences, which in turn may facilitate more efficient 

screening of suspected ligand compounds with behavioral or physiological relevance. 

Identifying full-length chemoreceptor proteins and their linked G-proteins (e.g. 

coexpressed Gα and trpc2 genes) can also help clarify if the functions of these receptor 

proteins are likely conserved in particular amphibian groups evolutionarily and hint at its 

overall importance to individual survival. 

In this study, our objective was to identify putative OR, V1R, V2R, and TAAR 

sequences in L. pipiens olfactory epithelium through RNA sequencing, along with putative 

G-proteins and trpc2 like proteins, and to phylogenetically screen the receptor sequences 

against known vertebrate sequences in terrestrial, semiaquatic, and aquatic species. If the 

receptor proteins discovered in our study are shown to be functional, a comparison to 

other vertebrate orthologs could narrow down which class of compounds likely bind 

identified L. pipiens receptors, along with their environmental origins (i.e. aquatic vs 

terrestrially derived cues); which ultimately helps elucidate the evolutionary relationships 

of these receptors.   

 

Methods: 

Tissue Collection and RNA Extraction Protocol: 

Adult L. pipiens individuals were obtained from Kons Scientific Co. (Germantown, 

WI). The specimens were anesthetized using Pharmaceutical grade tricaine 
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methanesulfonate (MS-222) and sacrificed in accordance with approved protocols: IACUC 

number 15013 and USAMRMC proposal number ERDC-FY-16-002.  

Olfactory epithelium from each individual was excised and submerged in RNALater 

solution (Ambion).  Samples were immediately placed on ice and then transferred to cold 

storage within 4 hours of collection. The olfactory epithelium from nine L. pipiens frogs 

(N=9) was pooled and total RNA was isolated using the RNeasy Plus Universal Mini Kit 

(Qiagen) as per the manufacturer's instructions.  Total RNA was quantified via the Quant-iT 

Broad Range assay kit (ThermoFisher) and the integrity was assessed via denaturing gel 

electrophoresis. 

 

Transcriptomic Sequencing and Data Analysis: 

 Sequencing: The pooled total RNA was analyzed at the University of Illinois at 

Urbana-Champaign’s (UIUC’s) Roy J. Carver Biotechnology Center (RJCBC). An RNAseq 

library was prepared using a TruSeq Stranded mRNA Library Prep Kit (Illumina, San Diego, 

CA) and quantitated by qPCR. The library was sequenced in a 161-cycle, paired-end run 

using a HiSeq SBS Kit V4 on a HiSeq 2500 platform. Sequencing reads were demultiplexed, 

adaptor-trimmed and converted into FASTQ format using Illumina’s bcl2fastq Conversion 

software (version 2.17.1.14). Subsequent data processing and bioinformatics analysis were 

performed on Biocluster (24 Intel Xeon 2.7 GHz CPU cores and 384 GB of RAM per node), a 

high performance computational cluster available at the Carl R. Woese Institute for 

Genomic Biology in UIUC’s RJCBC. 

Pre-processing: FASTQC (version 0.11.2) was used to assess the quality of the 

sequencing data before and after further cleaning. Trimmomatic (version 0.33) was used to 
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trim and filter any residual adaptor content and low quality bases with the following 

settings: ILLUMINACLIP:TruSeq3-PE-2.fa:2:15:10 LEADING:28 TRAILING:28 

SLIDINGWINDOW:3:15 MINLEN:30.  

De novo transcriptome assembly: The cleaned reads were normalized and assembled 

into a transcriptome using Trinity (version 2.0.6) on 24 CPU cores with 300GB of RAM. 

Quality assessment and filtering of the assembly was performed using Transrate (version 

1.0.1) by mapping normalized reads back to the assembly. 

Preliminary CR identification: We curated functionally characterized or 

computationally inferred putative OR, VR and TAAR gene sequences in up to 26 fish, 

amphibian, and reptile species deposited in NCBI’s GenBank (see Table 1.2 below). 

BLAST+(version 2.2.31) was utilized to construct a subject nucleotide database of the 

filtered assembly by running the makeblastdb script.  Next we queried the known CRs 

against the subject database using tblastx under the following settings: low-complexity 

filtering turned off, E-value threshold = 1e-5, and output in BLAST archive format. The 

blast_formatter script was run to convert the output format to tabular. Only the top hit for 

each subject sequence was retained. These BLAST hits were further filtered by setting a 

threshold of alignment length >= 250 amino acids.  

Transmembrane domain identification: The remaining contigs were run through 

OrfPredictor (Min et al. 2005) to identify their protein-coding region (i.e., Open Reading 

Frame or ORFs). The ORFs were further analyzed using TMHMM (Krogh et al. 2001) to 

predict transmembrane domains (TMDs). Contigs containing both complete ORFs and 7 

TMDs (Shi and Zhang 2009) were considered putative OR, V1R, V2R or TAAR genes in the 

adult L. pipiens olfactory epithelium.  
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In parallel, we also used SOAPdenovo-Trans v.1.03 (Xie et al. 2014) to assemble 

another transcriptome from the same RNA sequencing dataset (Gong et al. Manuscript in 

preparation) and followed the same procedure as described above to identify and annotate 

putative CRs. This was necessary because significant discrepancies often exist between 

transcriptomes assembled using different assemblers, leading to significant differences in 

both the number and the sequences of putative CRs inferred. 

Transient receptor potential channel trpc2 and coupled G-protein transcripts were 

also identified from both Trinity- and SOAPdenovo assemblies using the same pipeline, 

specifying E-value thresholds of 1e-20 and 1e-10, respectively. 

 

Phylogenetic Analysis of Putative Chemosensory Receptor Genes: 

Putative CR contigs shared between the Trinity- and the SOAPdenovo-assembled 

transcriptomes (full-length identity >= 95%) were selected to create a shortlist of 

sequences for each type of CR identified (i.e., 93 ORs with detailed 3’ and 5’ ends, 2 V1Rs, 4 

V2Rs, and 1 TAAR). Geneious version 10.1.3 (http://www.geneious.com, Drummond 2012; 

Kearse et al. 2012) was then used to create separate CR BlastP databases for ORs, VRs, and 

TAARs incorporating known CR gene ORF sequences across 26 species (for a total of 4605 

OR ORFs, 541 VR ORFs, and 571 TAAR ORFs; see Table 1.2 below) for direct screening 

against the shortlist of L. pipiens CR sequences.     

A BlastP search was conducted for each L. pipiens CR group using these custom OR, 

TAAR, and VR databases to identify the single best translated ORF sequence match per each 

L. pipiens OR and the top 10 best matches for each L. pipiens V1R, V2R, and TAAR for 

identification of the optimal ortholog candidates across all 26 species. Geneious “grade” 
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percentages (combining E-value, Percent-Identity, and Query-Cover; Drummond 2012; 

Kearse et al., 2012) were utilized to make these selections. Subsequently, a separate BlastP 

search was conducted per L. pipiens CR group (incorporating the shortlist 93 ORs, 2 V1Rs, 4 

V2Rs, and 1 TAAR) to identify the cumulative 10 best mouse (MUS taxid) translated ORF 

matches per CR type for inclusion in the alignment and the phylogenetic analysis as the 

mammal outgroup (see supplementary file for all sequences included). Thus, a total of 177 

ORs (based on shared matches), 32 V1Rs, 52 V2Rs, and 21 TAARs, were chosen for 

subsequent alignment and analysis.  

The shortlisted translated putative L. pipiens CR ORFs were aligned to their top 

orthologs using CLUSTALX (Version 2.1), and TrimAl_1.4 was employed to eliminate 

alignment segments where positions with greater than or equal to 80% gaps were present 

across all sequences. After trimming, a maximum likelihood approach for phylogenetic 

analysis with 1000 bootstraps specified was performed using PhyML 3.0 (Felsenstein 1981; 

1985; Stéphane et al. 2005; Guindon et al. 2010). FigTree (Version 1.4.2) and Adobe 

illustrator CC 2017 were then utilized for tree construction and display. All trees were 

midpoint rooted for display purposes.  

 

Results: 

Northern Leopard Frog Putative Chemosensory Transcripts: 

Total RNA isolated from pooled olfactory epithelium tissue resulted in 632 ng and 

had a high purity as reflected by its A280/A260 and A260/A230 ratios. Both the quality and 

quantity of this RNA sample met the requirements for Illumina sequencing. We obtained 

273,573,153 raw reads of 160 bp (see Table 1.1 for statistics on sequencing data, 

10



 

processing, and de novo assembly). After pre-processing (trimming and filtering of 

adaptors and low-quality bases), we obtained 252,411,921 clean reads, which were de novo 

assembled into a transcriptome of 1,475,831 contigs using Trinity. After removing contigs 

shorter than 200 bp, Transrate determined 377,187 of the remaining contigs as 

trustworthy contigs with sufficient sequencing coverage depth. These good-quality contigs 

were compiled to serve as the subject database for BLAST search of potential CR 

transcripts. 

The curated query database consisted of 5717 known putative CRs in amphibian, 

fish and reptile species (see Table 1.2 for statistics on species and group breakdown of 

CRs). Using BLAST+’s TBLASTX program (with a similarity threshold of E<10-5 and a 

subject sequence length threshold of 750 nt), we identified 189 Trinity-assembled contigs 

as putative OR transcripts, 15 contigs as putative VR transcripts, and 1 as a putative TAAR 

transcript. Among the OR and VR transcripts, multiple isoforms per gene were identified 

and the best functional receptor candidates were selected based on comparison with an 

alternative transcriptome assembly (Gong et al. Manuscript in preparation). These included 

the following full-length putative transcripts: 103 ORs, 1 TAAR, 2 V1Rs, and 4 V2Rs.  

Transcripts which did not have clearly identifiable start and stop codons for the OR group 

were not included in the phylogenetic analysis.  

 

Northern Leopard Frog Putative Chemosensory Accessory Transcripts: 

A similarity search revealed a transcript for the transient receptor potential channel 

trpc2, an indicator of vomeronasal neurons (Liberles 2014) which has been shown to be 

expressed in both the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) 
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in X. lavevis (Sansone et al. 2014). Despite the anatomical segregation of VNO and MOE in 

the mostly aquatic Xenopus, expression of VRs are not limited to the VNO.  The predicted 

amino acid sequence of the L. pipiens trpc2 was similar to frog (S. tropicali and Nanorana 

parkeri 94% and 99% amino acid identity respectively), zebrafish (D. rerio; 74%) identity 

and mouse (Mus musculus; 78% identity).  

In addition, we identified homologs of olfactory specific G-proteins (Golf and Gs) 

required for the signal transduction of most ORs (Berghard and Buck, 1996). 

 

Phylogenetic analysis: 

  Total numbers of putative L. pipiens CRs included in phylogenetic analyses are as 

follows: 93 ORs, 2 V1Rs, 4 V2Rs, and 1 TAAR, and their orthologs span 11 different species 

(177 ORs, 32 V1Rs, 52 V2Rs, and 21 TAARs overall). The species identities included for all 

phylogenetic analyses (# of species represented by each tree: 5 OR, 5 V1R, 5 V2R, and 7 

TAAR) and the number of ortholog-representatives included, per species, are provided in 

Table 1.3.  

Amino acid substitution models selected for each tree were as follows: 

OR=JTT+G+I+F, V1R=JTT+G+F, V2R=JTT+G+I+F, and TAAR=JTT+G+F (Vincent et al. 2017; 

see supplementary files for further details). Bootstrap branch support values out of 1000 

were calculated (shown in Figures 1.1, 1.2, 1.3, and 1.4 in Appendix A Chapter 1 Figures 

Supplementary File; support values of 700/1000 and higher alone are shown for the OR 

tree in Figure 1.1 in Appendix A Chapter 1 Figures Supplementary File), where the majority 

of L. pipiens CRs cluster with S. tropicalis and other transitional vertebrate orthologs, 

specifically reptile orthologs. 
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Discussion: 

To our knowledge, this is the first study that has reported full-length CRs in a non-

Xenopus anuran amphibian. We also identified up to 36 Golf candidates and a trpc2 

candidate (Kajiya et al. 2001; Stowers et al. 2002; Kiemnec-Tyburczy et al. 2011. These full-

length CRs and associated linked-G-proteins (see supplemental materials) indicate that the 

first stages of the vertebrate CR transduction pathway are likely conserved in L. pipiens 

genome, hinting at a degree of chemosensory functional relevance for the northern leopard 

frog and/or its recent common ancestors. The phylogenetic analyses we conducted with 

these putative CRs have generated a number of hypotheses regarding the evolutionary 

pressures that shaped them, in addition to predictions surrounding receptor function.  

First, a large proportion (64/93) of the L. pipiens ORs included in this analysis 

appear to be most closely related to orthologs of the primarily aquatic Western Clawed frog 

(Xenopus Silurana Tropicalis; Hellsten et al. 2010). However, our comprehensive list of L. 

pipiens top matching ORs includes both semiaquatic and terrestrial species, suggesting that 

waterborne and volatile chemical cues could be relevant for adult L. pipiens natural history. 

In fact, of all 26 species queried for this analysis, the top orthologs selected (see Table 1.3) 

belong to S. tropicalis, the American alligator (Alligator mississippiensis), the Chinese 

alligator (Alligator sinensis), and the arboreal lizard/Carolina anole (Anolis carolinensis). All 

but one of these species, A. carolinensis, are semi-aquatic vertebrates (S. tropicalis, A. 

mississippiensis, and A. sinensis) which spend variable durations in water and on land 

(Weldon and Ferguson 1993; Thorbjarnarson et al. 2002; Herrel et al. 2012). Therefore, it 

is more than reasonable to assume that these OR divergence patterns (see Figure 1.1 in 
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Appendix A Chapter 1 Figures Supplementary File) accompany adaptations associated with 

a transitional lifestyle, possibly resulting in the detection of a variety of cue classes (water 

soluble, volatile, and nonvolatile odorants). Meanwhile, L. pipiens ORs that most closely 

resemble the terrestrial, A. carolinensis ORs (Lovern et al. 2004) are more narrowly 

predicted to detect terrestrially derived, volatile cues (e.g. OR7030549NLF and 

gi|637331092|ref|XM_003224539.2|_1847_Ac; See Figure 1.1 in Appendix A Chapter 1 

Figures Supplementary File).  

With regard to the best L. pipiens V1R matches, the organisms for which top 

orthologs were discovered include a variety of fish species (see Table 1.3), S. tropicalis, A. 

mississippiensis, and A. sinensis. Mammalian (MUS taxid) V1R divergence appears to predate 

the divergence of these transitional vertebrate and fish orthologs (See Figure 1.2 in 

Appendix A Chapter 1 Figures Supplementary File), which suggests that aquatic 

environmental pressures likely contributed to the recent evolution of L. pipiens V1Rs. Thus, 

the 2 L. pipiens V1Rs included in the analysis likely detect water-soluble pheromones or 

other nonvolatile environmental cues associated with primarily aquatic habitats. This 

prediction supports the emerging theory that anuran V1Rs could be an exception to the 

‘rule’ of terrestrial vertebrate V1R volatile odorant detection (Woodley 2010). However, it 

is also possible that these V1R divergence patterns indicate a separate evolutionary 

emergence of volatile-detecting V1Rs in transitional vertebrate clades, in response to an 

increasingly terrestrial lifestyle (see Xenopus, Alligator, and L. pipiens representatives in 

Figure 1.2 in Appendix A Chapter 1 Figures Supplementary File).  

Concerning the 4 putative L. pipiens V2Rs incorporated in our phylogenetic analysis, 

a variety of fish species’ orthologs (see Table 1.3), S. tropicalis orthologs, and a singular A. 

14



 

carolinensis ortholog were identified as the best matches.  The divergence pattern observed 

across all species (see Figure 1.3 in Appendix A Chapter 1 Figures Supplementary File) 

indicates that L. pipiens V2Rs are most closely related to S. tropicalis orthologs for all but 

one receptor, which resembles the divergence pattern observed by P. Shermani in relation 

to Xenopus laevis and other vertebrate receptors (P. Shermani; Kiemnec-Tyburczy et al. 

2011). The remaining L. pipiens V2R included in this analysis appears to be most closely 

related to a variety of fish orthologs. Collectively, this divergence pattern and the ecologies 

of Xenopus and fish, respectively, suggest that all the L. pipiens V2Rs included in this 

analysis likely detect aquatically derived pheromones (water-soluble or nonvolatile); as 

was posited by Kiemnec-Turburczy et al. (2011) regarding P. shermani V2R function. 

Alternatively, these L. pipiens V2Rs might well detect more general (aquatic) 

environmental odorants (Woodley 2010). Regardless, since the V2Rs expressed in L. 

pipiens vomeronasal epithelium were not targeted in this study, transcriptome sequencing 

of vomeronasal tissue is required before any encompassing hypotheses can be generated 

surrounding V2R function in L. pipiens.  

Finally, the TAAR divergence patterns observed across top matching species (see 

Figure 1.4 in Appendix A Chapter 1 Figures Supplementary File) indicate that the L. pipiens 

TAAR included in our analysis is most closely related to a recent common ancestor of 

known mouse and reptile TAAR orthologs. Fish orthologs appear to have diverged prior to 

this split, and the majority of the closest L. pipiens’ orthologs belong to MUS, an entirely 

terrestrial group. Of the closely related reptile orthologs, A. mississippiensis and A. sinensis 

are non-exclusively terrestrial species. Still, these divergence patterns indicate that a 

terrestrial lifestyle shaped the evolution of this L. pipiens TAAR, suggesting that it likely 
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detects volatile amine chemical cues. This is further supported by A. mississippiensis’ 

capacity for volatile odorant detection (Weldon et al. 1990; Hansen 2007; Mason and 

Parker 2010.  

Collectively, our results suggest that anuran amphibians (e.g. L. pipiens) retain the 

capacity to detect a variety of terrestrial and aquatically derived chemical cues, consistent 

with previous organismal studies demonstrating behavioral responses in L. pipiens and the 

closely related L. sphenocephalus (Shinn and Dole 1978; Glennemeier and Denver 2002; 

Johnson et al. 2003). Futher research is needed to validate these speculations and  

elucidate the significance of this chemical sensing capacity. The discovery of putative CR 

genes and phylogenetic analysis conducted in this study facilitate future research aimed at 

deorphaning L. pipiens CRs and offer predictions to help streamline ligand-screening.  
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Tables: 

Table 1.1: Statistics for RNAseq data, pre-processing and de novo assembly (Trinity) to establish 
reliability of data and CR identification. 
 

Contig metrics:  

 n seqs                   1475831 

 smallest                     224 

 largest                    29971 

 n bases                783617848 

 mean len                  530.97 

 n under 200                    0 

 n over 1k                 136058 

 n over 10k                   324 

 n with orf                 97780 

 mean orf percent           49.02 

 n90                          262 

 n70                          364 

 n50               587 

 n30                         1255 

 n10                         3265 

 gc                          0.43 

 gc skew                    -0.04 

 at skew                     0.01 

 cpg ratio                   1.41 

Read mapping metrics:  

 fragments               31105623 

 fragments mapped        23243455 

 p fragments mapped          0.75 

 good mappings           15781036 

 p good mapping              0.51 

 bad mappings           7462419 

 potential bridges         462241 

 bases uncovered        119108626 

 p bases uncovered           0.15 

 contigs uncovbase         955034 

 p contigs uncovbase         0.65 

 contigs uncovered         318958 

 p contigs uncovered         0.22 

 contigs lowcovered       1297058 

 p contigs lowcovered        0.88 

 contigs segmented         119635  
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Table 1.1     (cont.) 

 p contigs segmented         0.08 

Summary Statistics  

 TRANSRATE ASSEMBLY SCORE   0.049 

 TRANSRATE OPTIMAL SCORE   0.2703 

 TRANSRATE OPTIMAL CUTOFF  0.4983 

 good contigs              377187 

 p good contigs              0.26 
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Table 1.2: Statistics for species and group breakdowns for collated known chemosensory receptors 
in fish, reptile, and amphibian species available for comparison. 
 

NCBI 

taxonomy 

ID 

Scientific name Common name OR VR TAAR 

8496 Alligator 

mississippiensis 

American alligator 489 1 9 

38654 Alligator sinensis Chinese alligator 580 2 7 

28377 Anolis carolinensis arboreal lizard/Carolina 

anole 

212 65 6 

7994 Astyanax mexicanus Mexican tetra or blind cave 

fish 

109 5 41 

244447 Cynoglossus semilaevis tongue sole (bony fishes) 92 3 22 

7955 Danio rerio Zebrafish 478 50 98 

8010 Esox Lucius northern pike (bony fishes) 133 4 23 

8153 Haplochromis burtoni Burton's mouthbrooder 

(bony fishes) 

98 12 20 

7998 Ictalurus punctatus channel catfish (bony fishes) 16 0 0 

215358 Larimichthys crocea large yellow croaker (bony 

fishes) 

207 4 25 

7897 Latimeria chalumnae coelacanth (fish) 163 30 26 

7918 Lepisosteus oculatus spotted gar (bony fishes) 168 7 44 

106582 Maylandia zebra zebra mbuna (bony fishes) 100 5 25 

32507 Neolamprologus 

brichardi 

Fairy cichlid (bony fishes) 75 4 14 

8208 Notothenia coriiceps black rockcod (bony fishes) 38 6 5 

8022 Oncorhynchus mykiss rainbow trout 8 1 0 

8128 Oreochromis niloticus Nile tilapia (bony fishes) 182 12 43 

8090 Oryzias latipes Japanese medaka (bony 

fishes) 

87 6 30 

48698 Poecilia Formosa Amazon molly (bony fishes) 109 9 35 

8081 Poecilia reticulate guppy (bony fishes) 99 13 30 

303518 Pundamilia nyererei Victorian cichlid (bony 

fishes) 

95 8 18 

8030 Salmo salar Atlantic salmon (bony 

fishes) 

83 13 0 
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Table 1.2 
 

(cont.)     

144197 Stegastes partitus bicolor damselfish (bony 

fishes) 

68 3 25 

31033 Takifugu rubripes torafugu (bony fishes) 112 5 18 

8364 Xenopus (Silurana) 

tropicalis 

Western clawed frog 765 260 7 

8355 Xenopus laevis African clawed frog 39 13 0 

      

  total no. of genes 4605 541 571 

    total no. of species 26 25 22 
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Table 1.3: Number of Northern leopard frog CRs and their top orthologs used for phylogenetic 
analysis.  
 
Species OR V1R V2R TAAR 
Northern leopard 
frog (Lithobates 
pipiens) 

93 2 4 1 

Mouse (MUS taxid) 10 10 10 10 

Western Clawed 
frog (Xenopus 
Silurana tropicalis) 

45 3 28 0 

     
Chinese alligator 
(Alligator sinensis) 

11 1 0 1 

American alligator 
(Alligator 
mississippiensis) 

13 1 0 1 
 
 
 

Arboreal 
lizard/Carolina 
anole (Anolis 
carolinensis) 

5 0 1 1 

Spotted gar 
(Lepisosteus 
oculatus) 

0 0 1 1 

Mexican tetra or 
blind cave fish 
(Astyanax 
mexicanus) 

0 0 0 3 

Coelacanth fish 
(Latimeria 
chalumnae) 

0 13 1 2 
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Table 1.4: Anticipated CR numbers based on those found in other frog species (Shi and Zhang 
2009).  Additional Note: we likely missed many true CRs because we only considered those 
appearing in both SOAP and Trinity assemblies to be reliable candidates, including 103 ORs, 2 V1Rs, 
6 V2Rs, and 1 TAAR. In addition, our pooled tissue samples were dissected from adult individuals. It 
is likely that we failed to capture a number of L. pipiens CRs expressed in other life stages (Shi and 
Zhang 2009; Zhou et al. 2009; Woodley 2010; Kiemnec-Tyburczy et al.). Finally, the fact that we 
only analyzed samples from the main olfactory epithelium could explain why we identified so few 
V1Rs and V2Rs because they may be expressed primarily in the vomeronasal organ epithelium 
(Woodley 2010). 

 
 
Anticipated CR numbers prior to 
analysis 

          OR          V1R            V2R              TAAR 

 410 21 249 2 
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Chapter 2:  Behavioral responses by northern leopard frog adults to conspecific 

chemical cues  

 

Abstract:  

Chemical signaling is an important facet of vertebrate communication, and 

amphibians are not the exception. However, very little is known about adult anuran (frog 

and toad) chemical communication and the few studies that have investigated chemical 

signaling in this group have discovered species- and sex-biased behavioral responses by 

adult anurans to chemical signals. Varied life histories and reproductive pressures likely 

dictate these responses, but to better understand the prevalence and purpose of adult 

anuran olfaction across species, information on chemical signaling across a large number of 

species is needed. We investigated sex-biased adult northern leopard frog behavioral 

responses to familiar and unfamiliar conspecific chemical cues to determine the 

importance of olfaction in conspecific recognition. Our results indicate that adult females 

respond favorably to conspecific cues with females spending significantly more time 

investigating cue vs. control sides of the testing-arena. Overall, results for males were 

equivocal with males responding much more variably.  Analyses comparing familiar versus 

unfamiliar indicate that both sexes show a slight preference for familiar cues.  Females 

respond to unfamiliar, opposite-sex conspecific cues, indicating chemical cues are likely 

involved in mate identification for females. Unfamiliar, same-sex conspecific odors did not 

significantly influence behavior for either sex. Our results indicate that adult anurans use 

chemical signaling for identification of conspecifics. Future research should investigate 

aquatic vs. terrestrial and learned vs. innate odors of significance to northern leopard frogs.  
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Introduction:  

Chemical signaling is a dynamic and versatile communication mechanism, spanning 

the entire gamut of living organisms in both terrestrial and aquatic habitats (Gleeson, 1978; 

Wyatt, 2003). This well-studied and fundamental aspect of vertebrate communication is 

important for a wide range of taxa, providing critical information regarding the presence of 

predators and prey, locations of mates and offspring, and allowing for territory and 

breeding site recognition (Wyatt, 2003, 2005, 2010, 2014; Brennan and Zufall, 2006; 

Muller-Schwarze, 2006). For amphibians the majority of work has focused on salamander 

groups and the tadpole/juvenile stage of anurans (Belanger and Corkum, 2009; Woodley, 

2014, 2015). Relatively little is known about adult anuran chemical communication, 

especially terrestrial communication (Woodley, 2014, 2015), with auditory and visual 

signaling taking precedence in anuran research (Belanger and Corkum, 2009; Kiemnec, 

2009; Poth et al., 2012; Woodley, 2015). A great deal of information is still needed 

regarding the types of chemical cues that induce behavioral responses in adult anurans, 

and information on olfaction in tadpoles is not likely to be sufficient for understanding the 

breadth and purpose of adult olfaction.  

One research area that has received extensive interest is individual response to 

conspecific cues. Conspecific cues can be used to find mates and suitable habitat as well as 

to assess habitat quality (Elliott et al., 1993; Aragón et al., 2000, 2001;Muller-Schwarze, 

2012). Numerous studies have demonstrated adult anuran responses to conspecific 

auditory cues (Loftus‐Hills and Johnstone,1970; Ryan, 1988; Wilczynski and Endepols, 

2007; Belanger and Corkum, 2009; Bee et al. 2013) but relatively little work has focused on 
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conspecific chemical cues. Recent efforts to fill this knowledge gap have documented varied 

responses with some studies showing conspecific attraction and others demonstrating 

avoidance (Belanger and Corkum, 2009; Schulte and Rössler, 2013) or no response 

(Gonzalo et al., 2006). Not surprisingly, responses often depended on whether the cue was 

from individuals of same or opposite sex (Hamer et al., 2011, Asay et al., 2005). Strength of 

response often differed by sex with some studies showing stronger responses by males 

(Hamer et al., 2011; Asay et al., 2005) and others showing stronger responses by females 

(Pearl et al., 2000; Wabnitz et al., 1999, 2000). In the Australian terrestrial toadlet 

(Pseudophryne bibronii), females and males both responded to opposite-sex conspecific 

volatile cues, but only females responded to both opposite- and same-sex conspecific cues 

(Byrne and Keogh, 2007).   

Species- and sex-biased behavioral responses to chemical signals are likely a 

function of the varied life histories and reproductive pressures on anurans (Arak, 1983; 

Werner, 1986; Duellman, 1986, 1989; Starnberger et al. 2014). Males that need to compete 

for mates, for example, may benefit more than females from utilizing conspecific chemical 

information, allowing them to better assess physical risks before engaging in competition 

with other males (e.g. Hamer et al., 2011). Conversely, responses may be similar between 

males and females if conspecific cues are used primarily to identify breeding habitat 

(Schulte et al., 2011). However, conspecific cues may also be avoided for species where 

density dependent larval survival is present (Spieler and Linsenmair, 1997) and field trials 

examining conspecific attraction or repulsion to non-chemical cues have been equivocal, 

with some studies showing avoidance and some attraction (Buxton and Sperry, 2016).   

Finally, strength of response may also vary with familiarity of the conspecific, as 
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anurans have been shown to be attracted both to familiar conspecifics and familiar 

environmental cues (i.e. pond water; Aragón et al., 2003; Belanger and Corkum, 2009). A 

learning component to conspecific recognition or identification, associated with positive or 

negative conditioning (Grubb 1976; Schoenbaum et al. 1999), might thus be responsible for 

some of the variable sex-biased and species-biased responses observed by anurans to 

conspecific chemical signals. Species are known to differ in their behavioral plasticity 

(West-Eberhard 1989; Laurila et al. 2002; Teolitsky et al. 2005), and learned odor 

recognition for plastic species might be adaptive under conditions where environmental 

pressures fluctuate over generations. For example, some frogs are known to utilize 

olfactory learning and social learning for predator avoidance (Ferrari and Chivers 2008; 

Ferrari et al. 2009). Alternatively, innate olfactory responses can signify a critical role in 

olfactory recognition regardless of environmental fluctuations (Spehr et al. 2006). The 

Dusky Gopher frog (Lithobates sevosus) for example displays innate recognition of two 

turtle species’ chemical cues, as it relies on these odors to locate suitable burrows 

(Thurgate and Pechmann 2006). Regardless, understanding the importance of innate vs 

learned chemical signaling to adult anurans and how responses to conspecific cues vary 

across species and sexes requires research across a wide range of species, which is 

currently lacking (Belanger and Corkum, 2009; Woodley, 2014, 2015). Here we examine 

sex-biased responses to conspecific volatile cues in adult Northern Leopard frogs 

(Lithobates pipiens) and determine whether those responses differ based on familiarity 

and/or opposite-sex vs same-sex conspecific cues.  

 

Methods:  
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Test Subject Housing Conditions:  

A total of 43 northern leopard frog adults, 22 male and 21 female, were collected 

from semi-natural environments (maintained outdoor breeding ponds) at Kons Scientific 

Co. (Germantown, Wisconsin USA). The frogs were separated by sex upon arrival in the lab 

and maintained in water held at a constant temperature throughout all trials in an effort to 

retain courtship and breeding receptivity (Kendell, 2002). The frogs were housed 

communally, with either 4 or 5 individuals per tank (Dimensions: 13.5” x 19.75” x 15”; 4 

female tanks with 4 individuals each, 1 female tank with 5 individuals, 3 male tanks with 4 

individuals each, and 2 male tanks with 5 individuals each). All of the frogs were 

maintained in reverse osmosis (RO) water with added salt, held within a range of 16.67 to 

18.33 degrees Celsius, and each tank was positioned with a slight tilt, establishing a 

partially aquatic, partially terrestrial environment. The elevated half of each of the tanks 

incorporated stacked, cut, black rubber floor mats for separation from the water. All tanks 

were kept in the same room, where the lights were set on a timer for 12 light and 12 dark 

hours (dark hours: 7 PM to 7 AM), and the tanks were washed once a month and syphoned 

one hour after every feeding. Tanks were also automatically flushed for 3 minutes, four 

times each day. The frogs were checked daily and fed live crickets 3-6 times per week.  

 

Behavioral Trial Procedures:  

Behavioral trials were designed to evaluate response to the following cues:  1) 

familiar same-sex conspecific odors (conspecifics housed together), 2) unfamiliar same-sex 

conspecific odors (conspecifics housed in different enclosures), and 3) unfamiliar opposite-

sex conspecific odors (conspecifics housed in different enclosures). The order of 
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experiments was randomized for all individuals, and each individual was only tested once 

for any given cue-type. All subjects were distinguished from one another via unique dorsal 

spot patterns for testing purposes, tested alone, and the minimum duration between 

experiments for any individual was 5 days; in an effort to avoid procedural habituation. 

Because the frogs needed to be separated by sex to preserve breeding receptivity for 

opposite-sex conspecific response trials, familiar opposite-sex trials were not conducted. 

The testing area was located in a room separate from the housing tanks to reduce 

disturbances to non-test animals. Room temperature was held constant at 20-21.1 degrees 

Celsius for all trials, and lighting was eliminated during habituation and trial periods to 

prevent visual stimuli from biasing the results and to mimic nocturnal activity patterns 

observed in this species (Kendell, 2002). Behavioral trials were performed using a 

rectangular, glass arena (Dimensions: 30’’ x 11.5’’ x 11.5’’) with point source cues 

positioned at either end of a 3-compartment grid (Right and Left sides= 8.5’’, Middle= 13’’); 

with moist, unscented, lotion-free paper towel substrate--one experimental and one 

control. Researchers were not present in the room during the trial and trials were recorded 

using an infrared video recorder. All human intervention between habituation and trial 

periods was done with a single red-light flashlight to reduce disturbance to the animal 

(Bouchard et al., 2009). All containers and experimental surfaces were thoroughly cleaned 

with VIRKON Aquatic Solution before, after, and between every behavioral trial to prevent 

the introduction of any contamination-source odors.  

Prior to each trial period, the individuals chosen at random for testing on that day 

were isolated and placed in plastic, cylindrical containers [diameter: 4.75’’, height: 8’’; with 

a large 4’’ x 4’’ Mirasorb BAND-AID gauze pad lining the bottom, 100 ml of standing, clean 
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RO--with salt added--water, and a 1’’ diameter ventilation hole in the lid]--for a minimum 

of 3 hours in the testing room before trials commenced to acclimate the individuals to the 

testing room. The containers were obscured from the experimental arena via an opaque 

curtain, all human personnel left the room, and the lights were maintained with a timer for 

normal light and dark hours (dark hours: 7 PM to 7 AM) until the isolation period was 

completed.  

At the start of the trail, test subjects were placed into the testing arena (Right and 

Left sides= 8.5’’, Middle= 13’’) containing moist substrate paper-towels and allowed a 30-

45 minute acclimation period under dark conditions.  The side of the arena, which was to 

receive the cue, and the source tanks for the cue was randomized for every trial. The cues 

themselves were added to the cue holding container by pouring a scoop (roughly 1 

cup/236.588 ml) of tank water with associated skin, fecal, and urine cues into a plastic 

container (dimensions: 9” x 3” x 1.75”) with 90 3/16th” holes drilled in the top for aeration. 

The cue container was placed on one side of the arena with another, identical container, 

containing only clean RO (with salt added) water, placed on the far side of the arena as a 

control. Video recordings of the trials were later scored by a blind observer with the 

amount of time in seconds a given individual spent within the cue and control sides of the 

testing arena (within that 20-minute/1200 second period) recorded for all trials, where 

expected time for each side was 340 seconds and expected time spent in the center was 

520 seconds (based on size).  

 

Statistical Procedure:   

We first tested for overall response to the cues for each sex using linear mixed 
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models fit with the nlme package in RStudio version 1.0.143 (Pinheiro et al., 2017; RStudio, 

2016). The difference in time each individual spent on the cue vs control side of the testing 

arena was treated as the response variable, where expected time spent on both sides under 

the null hypothesis is equal and the difference zero (e.g. 340 seconds-340 seconds = 0). 

SubjectID was incorporated as a random effect to account for pseudoreplication, as some 

individuals were tested with more than one of the three cue-type combinations (1) 

familiar, volatile, same-sex conspecific odors, 2) unfamiliar, volatile, same-sex conspecific 

odors, and 3) unfamiliar, volatile, opposite-sex conspecific odors. A significant intercept 

(i.e. where the intercept is estimated to be significantly different than zero) in this case 

signifies a significant difference in time spent on the cue and control sides across all males 

and females, respectively. No fixed variables were added to these intercept-only models.  

After separately evaluating female and male northern leopard frog responses to 

introduced cues across all groups, we conducted an unbalanced repeated measures ANOVA 

with both male and female trials combined, to evaluate differences based on sex, familiarity 

and opposite- vs same-sex cues. The anova.lme function in the nlme R package was 

employed to evaluate whether differences in time spent on cue vs control sides of the 

testing-arena existed for each cue-type. Trials where individuals did not move from the 

middle section of the testing arena (2 of 55 female and 2 of 53 male) were interpreted as a 

lack of response to the experiment and removed from analyses.  

 

Results:  

Frogs spent more time on the cue side of the tank in 62% of trials (67/108), 

compared to 34% of trials where frogs spent more time on the non-cue side and 4% 
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(4/108) where no choice was detected (frog did not move from middle of tank). However, 

this preference varied by gender with female leopard frogs spending more time on the cue 

side for 69% of trials (38/55; average differential time = 246.60 seconds, SE= 65.65, P 

<0.005; Table 2.1, Figure 2.1) for an average of roughly 21% greater time spent 

investigating cue vs control side of the testing arena, and male preference for the cue side 

was only demonstrated in 55% of trials (29/53) with similar time spent on the cue and 

non-cue sides (average differential time = 83.81 seconds, SE= 98.29, P=0.40) for an average 

of roughly 7% greater time spent investigating the cue side.  Preference did not 

consistently vary by date of the trial (P = 0.86), by frog body size (P = 0.48), or mass (P = 

0.15), and preference did not depend on the order of experimental treatments either (P= 

0.1231). 

For females, preference for cue side was exhibited for familiar (71% of trials), 

unfamiliar (68% of trials), opposite sex (79% of trials) and same sex cues (64% of trials), 

although none of these factors were significant in the repeated measures ANOVA (Table 

2.2). See Figure 2.2 for summary figures. Conversely, males showed much more variation in 

responses with preferences less consistent and pronounced (Figure 2.2, Table 2.2). For 

males, preference for the cue side was exhibited in 71% of familiar cue trials, 47% of 

unfamiliar cue trials, 56% of opposite and 54% of same sex trials (Figure 2.2), where no 

significance was detected. 

 

Discussion:  

Our results demonstrate that adult northern leopard frogs exhibit behavioral 

attraction to conspecific chemical cues, although the strength of response varied by sex. 
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Females were much more consistent in their behavior whereas male response was highly 

variable. Females exhibited preferences, albeit in some cases slight, to cues from familiar 

and unfamiliar conspecifics as well as to cues from both males and females.  Male response 

was equivocal across all trials, although they also demonstrated slight preference for 

conspecific, particularly familiar, cues.   

Previous work has demonstrated positive phonotaxis response by adult female 

leopard frogs to male conspecific calls (Pace 1974; Larson 2004) but this is the first to 

demonstrate response of this species to conspecific chemical signaling. Much of what is 

known about conspecific attraction in amphibians is based on phonotaxis trials. A very 

large body of work, focused on female response, has shown that females exhibit phonotaxis 

with strength of response (i.e. mate choice) affected by various acoustic parameters of the 

male call (Pröhl, 2003; Leary, 2009; Bee et al. 2013). However, phonotaxis trials designed 

to assess male responses have been rare, in large part because most female anurans do not 

advertise vocally. Very little is known about conspecific attraction via chemical signaling in 

anurans but the few studies that have undertaken this question have found varied 

responses (Asay et al., 2005; King et al., 2005; Gonzalo et al., 2006; Byrne and Keogh, 2007; 

Belanger and Corkum, 2009; Hamer et al., 2011). Our work demonstrates that northern 

leopard frogs likely use chemical communication to detect conspecifics and that the 

attraction exhibited by females to conspecific chemical cues is not purely a function of mate 

detection, as females appeared to respond to cues from both conspecific males and females.  

Broadly, recognition and attraction to conspecific cues likely serves a variety of 

roles including aiding in habitat selection, predator avoidance, mediation of intraspecific 

competition, and improved reproductive success via mate localization (Belanger and 
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Corkum, 2009; Woodley, 2014). Evidence for each of these has been found across 

amphibians groups, and since northern leopard frogs are known to congregate for breeding 

(McAllister et al., 1999; Kendell, 2002) and cluster while in captivity (personal 

observation), detection of conspecific odors may contribute to individual fitness for a 

number of reasons. Additionally, as is true for other species across animal groups, isolation 

can leave individuals vulnerable to predation (Jennions and Backwell, 1992) and 

conspecific odors can be used to locate foraging and breeding sites, increasing individual 

search efficiency (Secondi et al., 2005; Grueter and Leadbeater, 2014). The attraction to 

conspecific chemical cues we have demonstrated in female leopard frogs likely serves 

mating and other social or navigation functions. The strongest preference (quantified as 

time spent on cue side of testing arena vs non cue side) was documented for females 

presented with unfamiliar male cues (where these females did not receive prolonged 

exposure to these males), which is likely a function of mate recognition. This attraction 

could be innate, but since all the frogs were shipped together (overnight) it is impossible to 

determine whether or not this is the case. Still, whether learned or innate, females 

demonstrated a preference for male odors over a control with very little olfactory 

conditioning involved, suggesting a clear role in mate localization. We also saw a positive 

response to familiar female chemical cues, indicating that other aspects of conspecific 

attraction likely play a role.   

Additionally, both females and males responded more positively to familiar versus 

unfamiliar same sex cues. This could be due to a preference for familiar individuals or a 

preference for familiar environmental odors (learned odors associated with conspecifics 

that they were housed with). Regardless, learned familiar cues may be a proxy for home 
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range and/or breeding site recognition, with numerous studies showing that anurans 

orientate towards home pond water and other associated environmental cues (Grubb 

1975; Belanger and Corkum, 2009). Conspecific cues may also elicit an aggregation 

response by both females and males for the purpose of breeding (Secondi et al., 2005), 

possibly aiding in localization of breeding sites. Although we cannot differentiate responses 

to self versus responses to other familiar individuals, previous work with Leiopelma 

hamiltoni demonstrated attraction to both self and non-self familiar cues (Waldman and 

Bishop 2004), suggesting that familiarity plays a role in conspecific attraction. It should be 

noted that the cues used in these experiments could have contained minor prey (i.e. 

cricket) particulates. However, the sex-biased differences in behavioral response across 

cue-types indicate that prey particulates are not likely to be the cause of response.  

Overall, the necessity for additional studies dedicated to evaluating the role and 

importance of chemical signaling in amphibians is growing, as a large proportion of 

amphibian populations have experienced massive declines over the past several decades 

(Collins and Storfer, 2003; Polo-Cavia et al., 2016). Research on chemical communication in 

amphibians, especially within more natural settings, could help conservationists determine 

the influence of chemical detection and signaling on overall amphibian survival and inspire 

more effective management techniques.  
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Tables and Figures: 
 
 
Table 2.1: Linear Mixed Model results for both females and males; Mean Difference (in seconds) of 
time spent on cue minus control side of test-arena where expected time spent on both sides is 340 
seconds overall; associated standard error, degrees of freedom, sample size per analysis, and t-
value test statistics shown. Bold text indicates statistically significant values (p<0.05).  
 
 

 Mean Difference  SE  DF  N  t- value  p  

Female  246.60  65.65  32  53  3.76  <0.005  

Male  83.81  98.29  29  51  0.85  0.40  
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Figure 2.1: Female and male L. pipiens responses to conspecific odor cues. Open bar: female. Filled 
bar: male. Values represent mean preference for scented side (time spent on cue side in seconds 
minus control side in seconds). Asterisk denotes significant preference based on separate linear 
mixed model results. N=53 for females, and N=51 for males. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

-50

0

50

100

150

200

250

300

350

p
re

fe
re

n
ce

 (
se

co
n

d
s 

sc
en

t 
-

se
co

n
d

s 
co

n
tr

o
l)

*

36



 

Table 2.2: Repeated Measures ANOVA results; Evaluations of significance at each level of 
familiarity, same vs opposite-sex cue, and sex fixed treatments; along with their associated 
interaction terms; Numerator and denominator degrees of freedom, F ratios, and p values 
displayed. Statistically significant values considered (p<0.05). Number of groups: 43 and total 
observations: 104. 
 

 
Source num d.f. den d.f. F ratio P 

Sex 1 41 0.14 0.71 

Familiarity 1 57 0.35 0.56 

same vs opposite-sex cues 1 57 1.09 0.30 

sex*familiarity 1 57 0.27 0.60 

sex*same vs opposite-sex cues 1 57 0.12 0.74 
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Figure 2.2: Female and male L. pipiens responses to conspecific odor cues (expected time on each 
side is 340 seconds total). Open bars: female. Filled bars: male. Values represent mean preference 
for scented side (time spent on cue side in seconds minus control side in seconds) per each cue-
type combination (1.Unfamiliar, Opposite-sex 2. Familiar, same-sex, and 3. Unfamiliar, same-sex). 
N=19 for females exposed to unfamiliar, opposite-sex cues. N=17 for males exposed to unfamiliar, 
opposite-sex cues. N=17 for females exposed to familiar, same-sex cues. N=17 for males exposed to 
familiar, same-sex cues. N=17 for females exposed to unfamiliar, same-sex cues. Finally, N=17 for 
males exposed to unfamiliar, same-sex cues. 
 
 
 
 

 

 

 

 

 

 

 

-300

-200

-100

0

100

200

300

400

500

OppositeSexUnfamiliar SameSexFamiliar SameSexUnfamiliar

p
re

fe
re

n
ce

 (
se

co
n

d
s 

sc
e

n
t 

-
se

co
n

d
s 

co
n

tr
o

l)

F

M

38



 

Chapter 3: Summary 

Though chemical communication is known to provide critical information to 

amphibian species, adult anuran chemical communication remains largely a mystery, 

especially for declining species. Insights into its molecular components, its influence on 

adult behavior, and its overall significance to anuran survival is thus sorely lacking, and our 

research represents a necessary first step towards bridging this critical gap in current 

knowledge. The full-length CR proteins and coupled G-proteins, we identified provide a 

platform for future studies to directly examine receptor function across receptor classes in 

adult L. pipiens olfactory epithelium (i.e. ORs, TAARs, V1Rs, and V2Rs). The presence of full-

length CR genes and their associated G-proteins suggests that the first step(s) of the CR 

signaling transduction pathway is likely intact (i.e. these CR genes are probably not 

dysfunctional, evolutionary relics). Furthermore, the distribution of these receptors among 

other known aquatic, semiaquatic, and terrestrial vertebrate receptors indicates 

divergence of function for the detection of aquatic and terrestrially derived chemical cues 

across CR types, sometime within the ‘recent’ evolutionary past. Whether or not these CRs 

retain similar functions to their orthologs included in this analysis is presently unknown, 

but the genetic information collected suggests a degree of conserved receptor function in 

adults L. pipiens. 

Intuitively, considering the semiaquatic nature of L. pipiens and other anurans, 

detection of a variety of cues would be adaptively advantageous for seasonal transitions 

towards more or less aquatic lifestyles. However, future studies targeting vomeronasal 

organ tissue and those directly aimed at testing receptor function are needed to further 
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elucidate the binding specificities of different receptor classes for adult anuran 

chemoreception.  

Regarding the influence of chemical detection on adult L. pipiens behavior, our 

research shows that detection of familiar (or learned), same-sex conspecific cues in both 

male and female adult northern leopard frogs could be beneficial, possibly acting as proxy 

home-range or familiar environmental cues associated with quality habitat. These familiar 

odors would help them return to known and/or quality habitat after foraging or migration 

attempts. Our findings also suggest that chemical detection of unfamiliar (likely innate), 

opposite-sex conspecific cues is of significance to adult female northern leopard frogs, 

presumably for localization of mates during courtship. No apparent detection of unfamiliar, 

same-sex conspecific cues by either sex was found. Further research is needed to 

accurately identify the significance of these nuanced behavioral responses by northern 

leopard frog adults but, collectively, our results indicate that chemical signaling could play 

a significant role in mediating adult L. pipiens behavior, whether or learned or innate.  
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Appendix A: Supplementary Files 
 
1. Chapter 1 Figures Supplementary File (phylogenetic tree figures associated with Chapter 1) 

2. Known OR-TAAR-VR Supplementary File (details about the 26 amphibian, reptile, and fish 

source species used to identify best orthologs) 

3. OR 4605 ORF-TMH-Prediction Supplementary File (complete list of the olfactory receptor 

open reading frames known for 26 amphibian, reptile, and fish source species) 

4. VR 541 ORF-TMH-Prediction Supplementary File (complete list of the vomeronasal receptor 

open reading frames known for 26 amphibian, reptile, and fish source species) 

5. TAAR 571 ORF-TMH-Prediction Supplementary File (complete list of the trace amine-

associated receptor open reading frames known for the 26 amphibian, reptile, and fish source 

species) 

6. 110 Common Northern Leopard Frog CRS_annotation-ORF-TMH –SOAP-Trinity 

Supplementary File (identified putative northern leopard frog chemoreceptor sequences and 

details) 

7. Northern Leopard Frog Common TRPC-nt-aa-SOAP-Trinity Supplementary File (identified 

putative northern leopard frog trpc gene sequences and details) 

8. Northern Leopard Frog Common Golf-nt-aa-SOAP-Trinity Supplementary File (identified 

putative northern leopard frog coupled g-protein gene sequences and details) 

9. Sum of Best ORF Matches Supplementary File (summary statistics for top selected open 

reading frame ortholog matches) 
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