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ABSTRACT 
 

 
 An essential element of the reclamation strategy proposed by the oil sands mining 

industry in northern Alberta, Canada, includes the creation of wetlands for the 

bioremediation of mining waste materials. The mining process used to extract oil from 

these deposits results in the production of large volumes of process-affected water (OSPW) 

and sediments (OSPS), which must be incorporated into wetlands as a component of the 

reclaimed landscapes. Wood frogs (Rana sylvatica) are an abundant native species that 

might be expected to inhabit these reclaimed wetlands. The objective of this study was to 

determine potential detrimental effects of OSPW and OSPS on the growth and 

development of wood frogs. Several morphological (weight, length, condition factor) and 

biochemical (whole body tadpole thyroid hormone and triglyceride concentrations and 

metamorph hepatic glycogen concentration) endpoints were assessed in conjunction with 

hatchability and survivability of wood frog eggs and tadpoles exposed to process-affected 

materials (OSPM) under field and laboratory conditions. 

 As part of this study, assay techniques were optimized to enable simultaneous 

measurement of whole body 3,5,3’-triiodothyronine (T3), thyroxine (T4) and triglyceride 

(TG) concentrations in wood frog tadpoles. These assays were used to monitor changes in 

T3, T4 and TG in wood frog  tadpoles during development from hatching to metamorphosis 

(Gosner stages 19-46), to establish baseline levels for subsequent application of the assays 

to evaluate contaminant effects. The results indicated peak T3 and T4 concentrations 

occurred during metamorphic climax (Gosner stages 40-46) and prometamorphosis 

(Gosner stages 31-40), respectively. Maximal TG concentrations were also observed during 

prometamorphosis. These assays were further employed to assess body condition and 
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development in wood frogs during a field study in 2005, and the following laboratory 

studies in 2006 and 2007. 

 In summer 2005, 29 reclaimed and five unimpacted wetlands were monitored for 

use by native amphibians, and tadpoles and newly-metamorphosed wood frogs were 

collected from a subset of sites as a preliminary assessment of contaminant effects. 

Endpoints such as metamorph hepatic glycogen and whole body tadpole T3, T4 and 

triglyceride concentrations were compared among six impacted and three reference 

wetlands. The surveys indicated 60% of OSPW-impacted wetlands were used by breeding 

adult amphibians, while wood frog tadpoles and newly-metamorphosed frogs were 

observed in 37 and 30% of OSPW wetlands, respectively. In general, lower whole body 

tadpole T3 and triglyceride concentrations were observed in wood frogs from wetlands 

containing OSPM. In contrast, hepatic glycogen concentrations in newly-metamorphosed 

frogs and whole body tadpole T4 and T3/T4 concentrations were comparable among the 

reference and impacted wetlands. In addition, the differences observed in total body weight 

and length of tadpoles and newly-metamorphosed wood frogs among OSPM and reference 

sites were likely due to minor differences in developmental stages of the animals collected 

from the various wetlands, rather than any contaminant effect. 

 In 2006 and 2007, wood frog eggs and tadpoles were exposed to several sources of 

OSPW and OSPS collected from reclaimed Suncor and Syncrude wetlands under 

controlled laboratory conditions. Hatchability was reduced in eggs exposed to water from 

only one of the OSPW sites, compared with the other process-affected ponds and the 

control water (P<0.05). In contrast, survivability of tadpoles was significantly reduced 

(P<0.05) in all the impacted sites in both years, with nearly all OSPW sites having <10% 
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survival. The exposure study evaluated the toxicity of five types of OSPS. Results indicated 

no impact of OSPS exposure on survivability of tadpoles, but showed reduced whole body 

weight (in three OSPS treatments), length (in two OSPS treatments) and body condition (in 

one OSPS) of tadpoles exposed to process-affected substrates tested (P<0.05). Whole body 

T3 and T4 concentrations in tadpoles from OSPS treatments were not different from the 

control treatment, but tadpole TG concentration was reduced in groups exposed to two 

impacted substrates (P<0.05). Water quality measurements, including determination of 

dissolved metals were conducted in an initial attempt to relate any potential toxic effect on 

wood frog growth and development to specific contaminants.  

 Results of the laboratory studies strongly suggest that exposure to OSPW and OSPS 

may adversely affect wood frog growth and survival. However, these findings were not 

entirely consistent with field observations and results of concurrent mesocosm studies.  

Further research is therefore needed to fully evaluate the suitability of reclaimed oil sands 

wetlands to support indigenous amphibian population. Future work should focus on the 

cumulative effects of water and substrates, as well as the effect of OSPM ageing on acute 

and chronic toxicity.  
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CHAPTER 1 
1.0 GENERAL INTRODUCTION 

 
1.1 Background: Athabasca oil sands 

The Athabasca oil sands, located in northern Alberta, constitute one of the world’s 

largest deposits of heavy crude oil (Figure 1.1). These oil sands cover an area of more 

than 42,000 km2 and are estimated to contain over 700 billion barrels of bitumen (Madille 

et al., 2001). They are the only oil sands deposits shallow enough to be suitable for open 

pit mining. Open pit mines are used for extracting commercially useful mineral or rock 

deposits found near the surface, where the overburden (surface material covering the 

valuable deposit) is relatively thin or the material of interest is structurally unsuitable for 

tunneling, as is the case for sand, cinder and gravel. Underground mining methods are 

utilized to extract valuable materials where the overburden is thick or the mineral occurs 

as veins hosted in hard rock. Open-pit mines are generally enlarged until the mineral 

reserve is exhausted. 

 

  

Athabasca Oil Sands  

Figure 1.1: Map outlining the Athabasca oil sands and surrounding area in Alberta, 
Canada (modified from Tarbuck and Lutgens, 1999). 
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Mining of oil sand in Alberta yields bitumen, which is a semi-solid form of crude 

oil containing silica sand, clay minerals and water. On average, bitumen consists of 

83.2% carbon, 10.4% hydrogen, 4.8% sulphur, 0.94% oxygen and 0.36% nitrogen 

(FTFC, 1995). It is extracted using the Clark Hot Water extraction process, which 

involves two main steps. During the first step, known as the conditioning stage, the slurry 

(a combination of oil sand and water) is mixed with hot water (79-93ºC) and caustic soda 

(sodium hydroxide) at a pH of approximately 8.2 (FTFC, 1995). This causes the bitumen 

and sand to separate due to their different masses, allowing the collection of bitumen 

from the surface of the mixture. The second step, known as the separation stage, involves 

a combination of hot water and agitation that results in the release of bitumen from the oil 

sand, and allows small air bubbles to attach to the bitumen droplets. The bitumen froth 

floats to the top of the separation vessel, and is further treated to remove residual water 

and fine solids. Together these stages are known as primary bitumen recovery. Crude 

bitumen is sticky and tar-like, which makes it much more viscous than traditional crude 

oil. Consequently, it must either be chemically split or mixed with lighter petroleum 

(either liquid or gas) before it can be transported by a pipeline and be upgraded into 

synthetic crude oil (Suddhasatwa et al., 1998). 

 

1.1.1 Contaminants associated with oil extraction 

The extraction procedure generates large volumes of liquid wastes, referred to as 

oil sands process-affected water (OSPW), along with a relatively stable suspension of 

solids and unrecovered bitumen called fine tails. Approximately 0.65 m3 of wastewater is 

produced during extraction of each ton of oil sands (Matthews et al., 2000). Bitumen 
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itself contains saturated hydrocarbons with long chain alkyl groups attached to bi- to 

tetracyclic cores, polycyclic aromatic hydrocarbons (PAHs), and naphthenic acids 

(Madill et al., 2001). 

Naphthenic acids are composed of saturated aliphatic, monocyclic and polycyclic 

alkanes with carboxylated aliphatic side chains of various lengths. They are 

biodegradable despite exhibiting surfactant properties that make them acutely toxic to 

aquatic life (Headley and McMartin, 2004). Polycyclic aromatic hydrocarbons, on the 

other hand, are potentially more persistent, and are known mutagens and carcinogens. 

They are present at 1.5 - 150 times higher concentrations in wetlands containing oil sand 

process-affected sediments than in sediments from unaffected wetlands; and are 4 - 6 

times higher in water from wetlands containing OSPW when compared with water from 

unaffected wetlands (Smits et al., 2000). 

 

1.1.1.1 Oil sand process-affected water (OSPW) 

Fresh tailings water resulting from oil sands processing can be acutely toxic to 

fish (LC50 = 125ml of OSPW/L for rainbow trout) and aquatic invertebrates (LC50 = 980 

ml of OSPW/L for Daphnia magna) (Mackay and Verbeek, 1993).  

Pore water present between particles of fine tailings in the settling ponds is 

slightly saline with the main ions being sodium (Na+), bicarbonate (HCO3
+) and chloride 

(Cl-). Other major ions such as potassium (K+), magnesium (Mg2+), calcium (Ca2+) and 

sulfate (SO4
-) are found at low concentrations (<20 ppm). Nutrients (most significantly, 

ammonia) and trace elements (generally at concentrations below 50 ppb) are also present 

in the pore water, along with high concentrations of dissolved organic carbon (50-70 mg 
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C/l) (Boerger et al., 1992). Most of the dissolved organic matter (>80%) is in the acid 

extractable fraction, and includes carboxylic acids, humic and fulvic acids, surfactants 

and phenolic components.  

Fine tailings pore water also contains simple phenols of low molecular weight at 

concentrations of less than 0.2 mg/l. Characterization of base/neutral organics extracted 

from the fine tails pore waters has shown concentrations of aromatic hydrocarbons, 

including PAHs, to be at or below detection levels (<1 ppb), except for certain low 

molecular weight organics (Boerger et al., 1992). Metals, including cadmium, zinc, lead 

and vanadium have been measured at concentrations well above the levels needed to 

elicit a toxic response in aquatic invertebrates and other taxa (Barton and Wallace, 1979). 

In addition to the complex mixture of organic and inorganic contaminants listed 

above, OSPW contains a variety of naphthenic acids in potentially high concentrations. 

This is not surprising, since naphthenic acids constitute as much as 50% by weight of the 

total acidic proportion in crude oil (Headley and McMartin, 2004). They are leached from 

the oil sands during the extraction process, and are present in the fine tails zone at a pH of 

8-8.5 and concentrations of 10-25 mg/l (Boerger et al., 1992). These compounds are 

responsible for most of the acute toxicity of OSPW to aquatic organisms (Mackay and 

Verbeek 1993). Although generally bioavailable, naphthenic acids can gather at 

aqueous/nonaqueous interfaces due to their surfactant-like properties, which can decrease 

their bioavailablity to a certain extent.  
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1.1.1.2 Oil sand process-affected substrates (OSPS) 

Unextracted (or residual) bitumen accounts for approximately 1-9% of fine tails 

in tailings ponds (FTFC, 1995). Concentrations of PAHs and heterocyclic aromatic 

compounds from bitumen range from <0.01-10 mg/kg in fine tails (FTFC, 1995). 

Sediments can act as reservoirs for trace metals and PAHs due to their hydrophobic 

properties. Characteristically, four- to six-ring PAHs sorb strongly to sediment but have 

very low water solubilities (Neff, 1979). This leads to a concentration-dependent 

equilibrium between the sorbed and dissolved states in the water column. Low molecular 

weight PAHs (Koc ~103-104) adsorb less strongly than high molecular weight PAHs (Koc 

~105-106) to organic carbon in sediments. In a wet landscape system (i.e., a lake or a 

pond), the relatively greater solubility of low molecular weight PAHs will allow them to 

cycle through the water-capping layer, while high molecular weight PAHs should remain 

bound to the fine tails (Madill et al., 2001). High organic carbon content in sediments is 

known to reduce PAH bioavailability.  

Studies have shown lower species diversity in benthic invertebrates, such as insect 

larvae in wetlands containing OSPS compared to wetlands unaffected by mining 

(Bendell-Young et al., 2000; Leonhardt, 2003). The larvae (e.g. chironomids) live and 

feed on sediment that has accumulated significant amounts of contaminants related to the 

oil sands extraction process. Insectivorous vertebrates (fish, birds and amphibians) feed 

on these benthic larvae, consuming both the larvae and the gut contents (Bendell-Young 

et al., 2000). Chronic exposure to OSPS resulted in lower body mass in mallard 

ducklings (Gurney et al., 2005) and greater mortality and stunted growth in Northern 

Canadian toad and wood frog tadpoles (Pollet and Bendell-Young, 2000). In addition to 
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direct toxic effects on insectivores, the presence of potentially bioaccumulative 

compounds in the oil sands effluent may lead to the transfer of these substances to higher 

trophic levels.  

 

1.1.2 Wetland reclamation strategy 

Surface mining by oil sands companies such as Syncrude Canada Ltd. and Suncor 

Energy Inc. currently account for 65% of total production from the oil sands (Alberta 

Department of Energy, 2005). The Alberta Environmental Protection and Enhancement 

Act (AEPEA) prohibits the release of the potentially toxic fine tailings and OSPW into 

the Athabasca River, and requires these companies to remediate their leases to a state 

approximating the environment present before mining operations began (Madill et al., 

2001). The production and storage of large volumes of process-affected water from 

extraction of bitumen poses a challenge for site remediation. 

Because the oil sands companies operate under a zero discharge policy, large 

tailings ponds are required to retain liquid wastes. The ponds function not only as 

clarifiers for tailings but also as temporary storage areas for the fine tails before 

reclamation. The slurry of water, solids and unrecovered bitumen resulting from the 

extraction of oil sand is transported to the tailings pond. Rapid settling of the coarser 

solids (>22 µm) from the discharged tailings slurry forms the dyke system around the 

tailings pond. Fine tails are formed when the solids (mostly kaolinite and illite clays) 

settle to the bottom. The surface water layer is recycled after a period of settling. 

Recycled water accounts for >70% of the water needed for bitumen extraction (Boerger 

et al., 1992).  
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The “wet landscape” option for complying with the AEPEA involves transferring 

the fluid tailings into a mined-out pit and capping them with clean water, to create 

artificial lakes and wetlands with (theoretically) the appearance and biological 

productivity of natural lakes in the region. To satisfy regulatory demands, these reclaimed 

wetlands need to demonstrate the ability to support aquatic and semi-aquatic organisms. 

 

1.2 Amphibian model species 

Amphibians are a class of vertebrates that generally undergo dramatic 

metamorphosis involving the transformation from an aquatic larva to a terrestrial or a 

semi-aquatic adult. Modern amphibians can be classified into three orders: Anura (frogs 

and toads), Urodela (newts and salamanders), and Caecilia (legless, wormlike animals) 

(Shi, 2000).  

There are a number of amphibian species that are indigenous to the Athabasca oil 

sands region. These species include: the western toad (Bufo boreas), the largest toad 

found in Alberta (55-125 mm in length); the boreal chorus frog (Pseudacris triseriata), 

Alberta’s smallest amphibian (20-40 mm in length); the Canadian toad (Bufo 

hemiophrys), Alberta’s smallest toad (37-75 mm in length); and the wood frog (Rana 

sylvatica), the smallest true frog in Alberta (30-60 mm in length). 

 

1.2.1 Amphibians as indicator species in ecotoxicology studies 

Amphibians can be extremely useful sentinel species in the assessment of 

contaminant effects in wetland habitats. They are important components of many 

different ecosystems worldwide. Many amphibians are herbivorous as tadpoles and 
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carnivorous as adults (Burger and Snodgrass, 1998). This accords them the status of both 

an important predator and a prey species. In many forest habitats, for example, the 

numbers and biomass of amphibians exceed all other vertebrates (Stebbins and Cohen, 

1995), such that declines in population can have severe implications for the whole 

community.  

Amphibians are particularly good representatives of wetland environments, since 

they have a life cycle that generally includes both an aquatic and a terrestrial phase. Their 

life history is unique among vertebrates, with the deposition of unshelled eggs in aquatic 

environments, followed by a gill-respiring, swimming detritivore/herbivore larval stage, 

and a semi-aquatic hopping or climbing insectivorous adult stage. This makes them 

potentially highly vulnerable to numerous stressors in both aquatic and terrestrial 

environments (Wassersug, 1997).  

Amphibians are sensitive to many pollutants, including metals such as aluminum, 

cadmium, iron, lead and zinc, and pesticides, such as DDT and atrazine. Birge et al. 

(2000) compared the sensitivity of fish species commonly used in toxicity tests to a 

variety of indigenous amphibian species. A total of 694 amphibian/fish comparisons were 

done to test 50 metals and inorganic chemicals, as well as 13 organic compounds. Results 

demonstrated that in 64% of all tests amphibians had lower LC50 values than fish. 

Amphibians are also potentially more likely than other vertebrates to accumulate 

significant body burdens, since toxicants can be readily taken up by both dietary 

ingestion and dermal absorption. Their highly permeable skin not only facilitates dermal 

respiration, but also potential uptake of contaminants. 
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1.2.2 Amphibian (anuran) development 

Amphibian metamorphosis is one of the oldest and best studied hormone-

regulated developmental processes. Amphibian larvae hatch as embryos from eggs and 

quickly transform into free swimming tadpoles. These larvae then undergo many changes 

themselves, in order to transform into a frog (Figure 1.2). 

 

     

                            (a)             (b) 

     

                                             (c)            (d) 

Figure 1.2: Life cycle of an amphibian: (a) clustered egg masses; (b) free-swimming 
tadpoles; (c) froglet with remnant tail; (d) fully metamorphosed frog. 
 
 

Anuran metamorphosis has three specific phases: premetamorphosis, 

prometamorphosis and metamorphic climax. Premetamorphosis includes embryogenesis 

and early tadpole growth and development. Some morphological changes, such as the 

initial development of the hind limbs, occur during this phase. During prometamorphosis, 

the hind limbs undergo rapid and extensive growth. Metamorphic climax is the period in 
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which the most rapid and significant morphological changes take place. These include the 

complete resorption of the tadpole’s tail, forelimb development, and dramatic changes in 

internal organs (Shi, 2000). 

 

1.2.2.1 Gosner stages 

In 1960, Kenneth L. Gosner devised a comprehensive system to classify the 

several stages of anuran embryonic and larval development. These “Gosner stages” 

demonstrate the complex changes a tadpole undergoes to complete metamorphosis in 46 

distinct steps.  

The embryonic or prefeeding phases are defined by Gosner stages 1 through 20. 

Embryos hatch between stages 17 - 20, and the external gill filaments develop fully 

between stages 21 and 23. The transition to a feeding and free-swimming tadpole occurs 

between stages 21 - 25. The hind limb bud develops between the stages of 26 and 30. 

From stages 31 - 37, there is the appearance of individual toes. Stages 38 - 40 are 

delineated by changes in the length of individual toes and the appearance of tubercles. 

Metamorphic climax, which heralds the drastic final changes in metamorphosis, extends 

from stage 41 to stage 45. The resorption of the tail results in a decrease of total length. 

Forelimbs appear in stage 42 and metamorphosis is complete at stage 46 (Gosner, 1960). 

 

1.2.2.2 Metamorphic climax 

Metamorphosis involves systematic, coordinated transformations of numerous 

structures and organs, which culminate in metamorphic climax (Figure 1.3). These final 

changes include remodeling of the digestive system along with resorption of the gills and 
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the tail, differentiation of the hind limb toes, and the appearance of forelimbs (Cai and 

Brown, 2004). Prior to the development of lungs, the gills are the main respiratory 

organs. As the lungs develop, the tadpole begins to swim to the surface of the water to 

breathe. Changes to the digestive system include shortening of the intestines to 

accommodate a carnivorous diet (Shi, 2000). The complex, highly integrated process of 

amphibian metamorphosis is vulnerable to disruption by environmental stressors, 

including chemical contaminants (Chinathamby et al., 2006; Gutleb et al., 2000) 

 

               

          (a)             (b) 

     

               (c)              (d) 

Figure 1.3: Changes that occur during metamorphic climax in anuran metamorphosis. 
(a) Differentiation of hind limb toes (Gosner stage 41); (b) Appearance of forelimbs 
(Gosner stage 42); (c) Resorption of the tail (Gosner stage 43); (d) Remnant tail (Gosner 
stage 44-45). 
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1.2.3 Wood frog natural history and distribution 

Rana sylvatica, commonly known as the wood frog, is recognizable by its 

characteristic black “mask” across the eyes, and may have a thin white stripe down its 

back (Government of Alberta, 2002) (Figure 1.4). Females are a few millimetres longer 

than males. Males have paired vocal sacs that inflate when they call. Tadpoles have a 

very short, round body and an arched tail fin that begins high on the back. They are 

uniformly dark with gold flecks in lines around the mouth. Wood frog tadpoles are 

omnivores, feeding on algae and bacteria, as well as on other amphibian eggs and 

hatchlings, including the American toad (Bufo americanus), gray treefrog (Hyla 

chrysoscelis), pickerel frog (Rana palustris), and spotted salamander (Ambystoma 

maculata). The adult wood frog diet includes insects, worms, snails, millipedes, 

molluscs, and other small invertebrates (Morin and Johnson, 1988; Petranka et al., 1994; 

Petranka et al., 1998). 

 

 

Figure 1.4: A wood frog (Rana sylvatica) (Government of Alberta, 2002). 
 
 

Breeding can occur from late April to June, with males calling during daylight or 

at night for one to two weeks. During breeding, the males have enlarged thumbs and toe 

webs to facilitate amplexus (the mating position of frogs and toads, in which the male 
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grasps the female with his limbs and waits for her to lay eggs so that he can fertilize 

them; fertilization is external). Females lay 2000-3000 eggs in large round masses of 

jelly. Masses from several females are usually laid together, either attached to submerged 

sticks and plants or free floating in seasonal pools, shallow ponds, marshy lake edges, 

flooded meadows, and quiet stretches of streams. An egg is about 1.5 mm in diameter and 

hatches in approximately three weeks (Government of Alberta, 2002). Tadpoles usually 

live in the shallowest and warmest parts of the wetland. Males mature one year after 

metamorphosis, while females reach maturity in two years. Wood frogs seldom live more 

than three or four years.  

Wood frogs are largely terrestrial, but are not usually found far from water. They 

inhabit marshes, riparian areas, wet meadows, moist brush, and open grassy areas 

adjacent to such habitats. Wood frogs hibernate in the soil, under logs, leaves or tree 

stumps covered by an insulating layer of snow. They do not go very far underground to 

hibernate and, as such, are exposed to freezing temperatures in winter. Their survival 

depends on the production of high levels of glucose as a cryoprotectant, which enables 

them to survive the freezing of up to 65 - 70% of their body water (Muths et al., 2005). 

When frozen, blood flow, pulmonary breathing and cardiac activity essentially cease. 

After thawing, these physiological functions are rapidly restored. 

Since wood frogs are able to withstand freezing, they are the only amphibians in 

North America that are found north of the Arctic Circle. Specifically, their range extends 

from Alaska to Labrador in northern North America (Chubbs and Phillips, 1998), 

reaching south to New Jersey, northern Georgia and northern Idaho. There are also 
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disjunctive populations in northern Colorado and Arkansas-Missouri (Stebbins, 1985, 

Conant and Collins, 1991) (Figure 1.5). 

 

Figure 1.5: Map of wood frog (Rana sylvatica) distribution in North America. 

 

1.3 Physiological endpoints and biomarkers in amphibian studies 

Environmental contamination and the potential adverse effects of chemical 

exposure have been proposed as contributing factors in the decline of some amphibian 

populations (Blaustein et al., 1994). Various physiological endpoints and biochemical 

biomarkers are being used as tools to assess the health of amphibians exposed to 

contaminants worldwide. Reproductive endpoints such as hatching rate and tadpole 

growth and survival can provide valuable insight into population sustainability in the face 

of environmental stressors. Biochemical biomarkers, such as determination of energy 

stores (triglycerides, hepatic glycogen) and hormone concentrations (thyroid hormones), 
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can provide useful information concerning the health and fitness of individual animals, 

and insight into the effects of exposure on survival potential. 

 

1.3.1 Reproductive endpoints 

Environmental contaminant exposure has the potential to affect amphibian 

reproductive success at several levels. Contaminant exposure of adult frogs can inhibit 

breeding behaviour, production of gametes, fertilization or offspring sex ratio (Carey and 

Bryant, 1995). Toxicants can also disrupt embryonic and larval development and growth. 

Hatching success, tadpole survival and growth, and time to metamorphosis are common 

indicators used to demonstrate the effects of contamination on amphibian population 

productivity. 

 

1.3.1.1 Hatching success 

Amphibian eggs possess a permeable membrane that allows uptake of chemicals 

from the water by the developing embryo (Dunson et al., 1992). Unfavourable 

conditions, such as dissolved metals (Horne and Dunson, 1995), low pH (Sadinski and 

Dunson, 1992) and/or high levels of organic carbon (Freda et al., 1990), can decrease 

amphibian egg hatching rate. Embryos of some species can take several weeks to hatch, 

which can increase the exposure period to any toxicants present in the water column. 

Studies with Spotted (Ambystoma maculatum) and Jefferson salamanders 

(Ambystoma jeffersonianum) have shown that low pH can cause thoracic swelling in the 

hatchlings. Low pH, high cation concentrations, or high dissolved metal concentrations 
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can also cause curling deformities in the exposed embryo (Laposata and Dunson, 1998). 

These deformities can affect hatching success and subsequent survival. 

 

1.3.1.2 Tadpole growth and survival 

Alterations in environmental factors such as resource limitation, predation, 

crowding and habitat dessication can affect tadpole growth and survival. These factors 

can either stimulate growth if present during prometamorphosis, or inhibit it if present 

during premetamorphosis (Shi, 2000).   

Anuran larvae can adapt to the varying availability of water. They can either 

prolong their aquatic phase, maximizing growth but risking desiccation, or escape the 

drying conditions, thus metamorphosing below optimal size. Juveniles that 

metamorphose at a small size have lowered ability to withstand desiccation and take 

longer to reach reproductive maturity (DiMauro and Hunter, 2002). Evaporation of the 

pond may also lead to increased concentration of nonvolatile compounds and metabolic 

wastes, which represent additional stressors to developing tadpoles. 

Most anurans do not ingest food at metamorphosis due to the magnitude of 

physiological and anatomical changes occurring in the final transition from aquatic larval 

stage to a semi-aquatic adult. While these changes take place, xenobiotic compounds 

taken up during the larval stage can either be eliminated or retained and redistributed in 

the tissues. Due to the loss of mass resulting from lack of feeding and the high energetic 

costs associated with metamorphosis, environmental contaminants that have been 

retained may become concentrated in tissues (Snodgrass et al., 2003). 

 

16 
 



1.3.2 Biochemical endpoints 

Changes in biochemical parameters (biomarkers) in response to environmental 

stressors can provide information which is more sensitive and specific for particular 

contaminant exposures than alterations in morphological or behavioral characteristics. 

Contaminant-induced changes in thyroid hormones and stored energy reserves in 

amphibian tadpoles may have significant consequences for successful metamorphosis and 

subsequent survival.  

 

1.3.2.1 Thyroid hormones 

The two major thyroid hormones responsible for metabolic regulation in 

vertebrates are 3,5,3’–triiodothyronine (T3) and 3,5,3,5’-tetraiodothyronine (T4). T4 is 

commonly known as thyroxine. These hormones act on the liver, kidney, heart, nervous 

system and skeletal muscle in order to stimulate cellular respiration, oxygen consumption 

and metabolic rate. The increase in metabolism, stimulated by thyroid hormones, 

generates heat which is of major importance in the thermoregulation of many vertebrates 

(Randall et al., 2002). T4 is the circulating hormone produced in the thyroid gland. It is 

converted into the active hormone T3 by the enzyme type II iodothyronine deiodinase 

(D2) in peripheral tissues. The location of the enzyme D2 plays a role in a tissue’s 

response to the circulating hormone (Cai and Brown, 2004).  

Thyroid hormones are essential in vertebrate development in general and play a 

pivotal role in the stimulation of amphibian metamorphosis in particular. Thyroid 

hormone levels usually rise significantly during metamorphosis in anurans. For example, 

studies with Xenopus laevis demonstrate steadily rising plasma thyroid hormone 
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concentrations as the tadpoles undergo both growth and morphological transformation 

(Leloup and Buscaglia, 1977; White and Nicoll, 1981).  

Because of their critical role, any stimulatory or inhibitory effects on thyroid 

hormone status may result in changes in larval morphology or the timing of 

metamorphosis. Increased levels of thyroid hormones accelerate metamorphosis of larvae 

in early developmental stages, leading to smaller juveniles with reduced fitness. 

Conversely, decreased thyroid hormone concentrations inhibit metamorphosis, 

prolonging the aquatic lifetime with associated increased chances for predation or 

desiccation.  

There are an increasing number of substances present in the environment thought 

to interfere with critical endocrine systems and developmental processes in vertebrate 

populations. These chemicals include insecticides, herbicides, pharmaceuticals and many 

industrial chemicals (Cheek et al., 1998; Danzo, 1997; Brucker-Davis, 1998; 

Sonnenschein and Soto, 1998). Several of these xenobiotics have the potential to interfere 

with various aspects of thyroid hormone function by disrupting secretion and/or 

distribution of endogenous hormone. For instance, the herbicide acetochlor can accelerate 

T3 induced precocious metamorphosis in the northern leopard frog, Rana pipiens (Cheek 

et al., 1999) and in the African clawed frog, Xenopus laevis (Crump et al., 2002). 

Methoxychlor, an estrogenic organochlorine pesticide, has been known to reduce and 

delay T3 surge during metamorphic climax (Fort et al., 2004). 
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1.3.2.1.1 Body condition indices  

Evaluation of amphibian body condition can serve as an indication of overall 

fitness and predict overwinter survival (Congdon et al., 2001). Contaminants can directly 

or indirectly increase metabolic rate, which can induce biochemical changes that, in turn, 

can adversely affect the amphibian’s ability to store energy. Lipids are mainly stored as 

triglycerides, while carbohydrates are stored as glycogen (Nelson and Cox, 2005).  

 

1.3.2.1.2 Triglyceride stores 

Fats are composed of triglyceride molecules which typically accumulate in the fat 

vacuoles of specialized adipose cells in vertebrates. Triglycerides in lipid tissue represent 

a primary form of energy storage. They are rendered highly compact by the relatively 

high proportions of hydrogen and carbon and low proportions of oxygen in the molecule. 

Consequently, 1 g of triglyceride yields about twice the energy upon oxidation as 1 g of 

carbohydrate. Triglycerides can be stored in high concentrations in the body since they 

have low solubility in water (Randall et al., 2002). Lipids in anuran amphibians can be 

found in fat bodies, liver, subcutaneous tissue, muscle, gonads and the tail (Sheridan and 

Kao, 1998). 

Stress induced by contaminant exposure can cause decreased levels of triglyceride 

storage in fat tissue, which can adversely affect critical energy-demanding processes, 

such as metamorphosis. Triglycerides are utilized by amphibians not only for metabolic 

maintenance during dormancy, but also for the production of gametes. Fat bodies are also 

shown to be essential for gonadal maintenance (Fitzpatrick, 1976). The highest 
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concentration of stored lipids in most adult amphibians occurs in early fall preceding 

hibernation, while the lowest concentration is in the spring and early summer. 

Triglycerides are also the principal form of stored energy in fish (Sheridan 1988; 

Jobling et al., 1998). Measurement of whole body triglyceride concentration has been 

used as an index of body condition in small fish, and have been shown to be sensitive to 

the energetic demands of environmental stressors, including contaminants. For example, 

reduced triglyceride levels were measured in sailfin mollies (Poecilia latipinna) exposed 

to increasing concentrations of 1,1,1-trichorlo-2-(o-chlorophenyl)-2-(p-

chlorophenyl)ethane (o,p’-DDT), an agricultural pesticide (Benton et al., 1994). 

Triglyceride levels were also seen to be depleted in the livers of cod (Gadus morhua) and 

winter flounder (Pseudopleuronectes americanus) from the Northwest Atlantic, 

following long-term exposure to crude petroleum (Dey et al., 1983). 

 

1.3.2.1.3 Hepatic glycogen 

In animals, glycogen is an essential form of stored energy rapidly available in 

response to a stressor (Campbell et al., 1999). It is primarily stored in the liver in most 

species, but also found at lower concentrations in muscles (Nelson and Cox, 2005).  

Glycogen reserves are essential to ensure overwinter survival of freeze-tolerant 

anuran species. It is converted to glucose which acts as a “cryoprotectant”, facilitating 

survival during slow cooling and thawing. Glycogen phosphorylase breaks up glycogen 

into glucose subunits. The active form of this enzyme, known as glycogen phosphorylase 

a, cleaves glycogen to form glucose 1-phosphate. In cells, glucose 1-phosphate is readily 

converted to glucose-6-phosphate by the enzyme phosphoglucomutase. Glucose 6-
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phosphate enters the glycolytic pathway, or is dephosphorylated to glucose, which is 

transported across the plasma membrane into the bloodstream (Randall et al., 2002).  

Mobilization and metabolization of liver glycogen reserves initiates an increase in 

blood and tissue glucose concentrations. The excess glucose promotes hydrogen bonding 

with water molecules which prevents cellular dehydration by decreasing water activity 

when extracellular spaces freeze. Wood frogs in particular utilize this approach to survive 

freezing up to -5ºC (Willens et al., 2005). 

 

1.4 Research objectives and hypotheses 

Athabasca oil sands mining companies are required by environmental legislation 

to restore impacted areas. Constructed wetlands are an essential component of current 

reclamation strategies. These wetlands contain OSPW and OSPS. There is considerable 

uncertainty regarding their suitability as habitats for indigenous amphibians, including 

wood frogs.  Wood frogs are an abundant native species in the Athabasca oil sands region 

which are likely to attempt to use these reclaimed landscapes as their habitat. This study 

represents an initial attempt to determine if OSPW and OSPS exposure adversely affects 

growth and development of wood frog embryos and larvae.  

It was hypothesized that contaminants associated with oil sand effluent present in 

these wetlands would adversely affect developing wood frogs. To test this general 

hypothesis, wood frog at different life stages with OSPW and OSPS exposure were 

monitored to assess potential toxicity. Physiological and biochemical endpoints, such as 

hatchability, early life stage survival, tadpole growth rate, time to metamorphosis, and 
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measurement of hepatic glycogen reserves, tadpole whole body triglyceride and thyroid 

hormone (T3 and T4) concentrations were used to assess contaminant effects. 

In addition, a laboratory study was performed to assess triglyceride and thyroid 

hormone (T3 and T4) concentrations in wood frog tadpoles at different stages of 

metamorphosis (Gosner stages 19 through 46). Consequently, a method for measuring 

whole body triglyceride and thyroid hormone concentrations in fish was modified for use 

in tadpoles. This method was further utilized to evaluate the effects of oil sands process-

affected materials (OSPM) on triglyceride and thyroid hormone concentrations in wood 

frogs.  

 

Specific objectives: 

 (i) Determine the relationship between whole body triglyceride and thyroid hormone 

concentrations during normal wood frog development (Chapter 2). 

(ii) Assess amphibian use of selected reclaimed and reference wetlands in the Athabasca 

oil sands region, and collect biological samples from tadpoles and emergent froglets for 

initial health evaluation (Chapter 3). 

(iii) Determine the effects of exposure to OSPW and OSPS on the hatchability, growth 

and survival of wood frog eggs and tadpoles (Chapter 4).  

(iv) Determine the effects of exposure to OSPS on whole body triglyceride and thyroid 

hormone concentrations in wood frog tadpoles (Chapter 4). 
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 CHAPTER 2 
2.0 Development of whole body tadpole bioassays and their application to stages in wood 

frog metamorphosis 
                                                 
 
2.1 Abstract 

This study was designed to assess the usefulness of whole body thyroid (TH) and 

triglyceride (TG) concentrations as tools to evaluate the effect of environmental stressors 

on tadpole thyroid gland function and energy stores, respectively. Thyroid hormone 

concentrations are potentially useful biomarkers because these hormones appear to be 

essential initiators of amphibian metamorphosis. Triglyceride stores reflect general health 

and nutritional status. Both endpoints may be sensitive to environmental stressors, such 

as chemical contaminants. In this study, whole body concentrations of thyroid hormones, 

3,5,3’-triiodothyronine (T3) and thyroxine (T4), and triglycerides were measured in 

developing wood frogs (Rana sylvatica) during development and metamorphosis (Gosner 

stages 19 through 46). A new method was employed, which utilizes the same whole body 

tadpole homogenate to measure all three biomarkers. Results indicated that the highest 

concentration of T3 occurred during metamorphic climax (3.69 ng/g tadpole), while T4 

concentrations were highest during prometamorphosis (57.6 ng/g tadpole). The T3/ T4 

ratio was also greatest during metamorphic climax (0.105), consistent with increased 

conversion of T4 to T3 during this period of development. Whole body triglyceride 

concentrations were generally greatest during early prometamorphosis (1.44 mg/g 

tadpole), just before metamorphic climax. Although somewhat preliminary, these 

baseline results may enable the future application of these whole body assays to the 

assessment of potential impacts of environmental contaminants on amphibian 

populations.  
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2.2 Introduction 
 

Approaches to evaluate the effects of environmental contaminants on amphibian 

health should include tools to assess potential effects on growth and development of the 

aquatic larval life stage, and the process of metamorphosis. Two potential biomarkers of 

toxicological significance to amphibian growth and development are thyroid hormone 

concentrations, such as 3,5,3’-triiodothyronine (T3) and thyroxine (T4), as well as 

triglyceride (TG) stores. 

Amphibian metamorphosis constitutes three main segments: Premetamorphosis 

occurs prior to the formation of a functional thyroid gland, and signifies initial tadpole 

growth. In this study, this period is defined by Gosner stages 19 through 31. 

Prometamorphosis (Gosner stages 31 through 40) includes the period of thyroid gland 

development, as well as development of the hind limbs and differentiation of the toes 

(Leloup and Buscaglia, 1977). Metamorphic climax is characterized by the most dramatic 

internal and external transformations of the tadpole, culminating in the final transition to 

the adult body form. This period coincides with Gosner stages 40 through 46, until 

completion of metamorphosis. Amphibian larval development and metamorphosis is 

initiated and controlled by T3 and T4 (Shi, 2000), such that changes in their status may be 

a useful biomarker of adverse effects.  

Previous studies in Rana, Bufo and Xenopus have demonstrated that elevations in 

circulating plasma concentrations of the thyroid hormones T3 and T4 correlate with 

metamorphosis (Leloup and Buscaglia, 1977; Miyauchi et al., 1977; Regard et al., 1978; 

Suzuki and Suzuki, 1981; Weil, 1986). Prometamorphosis is generally characterized by 

rising concentrations of endogenous T3 and T4, with peak plasma levels usually seen at 
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metamorphic climax (Shi, 2000). Studies of Xenopus laevis development revealed very 

low levels of T3 and T4 during premetamorphosis, when tadpoles grow rapidly but exhibit 

little morphological change. During prometamorphosis, synthesis of endogenous thyroid 

hormones increase (coincident with thyroid gland development and growth), and 

concentrations of plasma T3 and T4 rise, as the tadpole undergoes both growth and 

morphological transformations. Finally, at the climax of metamorphosis, plasma T3 and 

T4 concentrations peak and the tadpole stops feeding and undergoes a rapid metamorphic 

transition. Plasma T3 and T4 concentrations typically decline again on completion of 

metamorphosis (Leloup and Buscaglia, 1977; White and Nicoll, 1981), perhaps in part 

due to partial regression of the gland itself (Shi, 2000). 

Metamorphosis leads to a wide range of morphological and biochemical changes. 

The brain undergoes restructuring, and genetic reprogramming leads to the appearance of 

digestive enzymes in the pancreas, urea cycle enzymes and serum albumin in the liver, 

and the keratinization of the larval skin. The most dramatic modifications, however, are 

the almost simultaneous emergence of limbs and total loss of larval tails, gills and the 

digestive system (Tata, 2006). 

Both thyroid hormones (T3 and T4) are synthesized in the thyroid gland. T4 is 

either released directly into the circulating plasma or converted to T3 (the active 

hormone) in the thyroid gland through the action of the enzyme type II iodothyronine 

deiodinase (D2); although T4 can be converted to T3 in other organs as well. T3 is 

generally present at much lower concentrations than T4 in plasma. Expression of D2 

enzyme is upregulated in tissues undergoing metamorphic change. Disruption in the 

function of this enzyme could prevent the conversion of T4 to T3, thereby delaying 
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metamorphosis and making the larvae more susceptible to predation and/or dessication 

(Cai and Brown, 2004). 

Although thyroid hormones play an essential role during metamorphosis, their 

synthesis in the thyroid gland is under complex neuroendocrine control. Thyroid 

hormones in turn can influence neuroendocrine function during metamorphosis. These 

interactions are manifested in the hypothalamus-pituitary-thyroid axis through the actions 

of several hormones. The pituitary gland positively regulates the thyroid gland whereas 

the thyroid gland negatively feeds back to regulate the pituitary gland secretion. The 

consequence of this interaction is that surgical removal of the pituitary gland inhibits frog 

metamorphosis. Metamorphic stasis can also be induced by blocking the influence of the 

hypothalamus on the pituitary (Dodd and Dodd, 1976; White and Nicoll, 1981; 

Kikuyama et al., 1993; Kaltenbach, 1996; Denver, 1996). Therefore, thyroid hormone 

profiles in amphibians are the net result of numerous regulatory mechanisms acting at 

two levels: the neuroendocrine axes that control hormone production, and the peripheral 

tissues that control hormone processing and hormone removal (Shi, 2000).  

Determination of total body triglyceride concentrations may also be a valuable 

biomarker for evaluating the health of developing tadpoles. Like most vertebrate animals, 

adult anurans store fat, an important energy source, when there is an abundance of food. 

The developing tadpole’s ability to store fat may also reflect the health of their 

environment as it relates to food abundance and the presence of specific stressors. For 

example, tadpoles that are subjected to chronic contaminant exposure may be required to 

expend additional energy to metabolize xenobiotics or maintain homeostasis, and 

consequently store less energy in fat bodies (Rowe et al., 2009).  
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Lipids play a major role in fueling the energetic demands associated with 

metamorphosis. Generally, the concentration of whole body lipid is low in 

premetamorphic tadpoles, increases during prometamorphosis, and declines during 

metamorphic climax as fat stores are utilized and tadpole’s food intake declines (Sheridan 

and Kao, 1998). 

The objective of this study was to assess changes in whole body thyroid hormone 

(T3 and T4) and triglyceride concentrations in the same tadpole during the course of 

normal development and metamorphosis of wood frog (Rana sylvatica) tadpoles, in order 

to evaluate the potential usefulness of these biomarkers in the assessment of amphibian 

population health. This has not previously been done in this species. Methods originally 

developed to measure whole-body thyroid hormones and triglycerides in fish (Weber et 

al., 2003) and lizards (Brasfield et al., 2004) were modified for application to wood frog 

tadpoles. 

It was hypothesized that, similar to other anuran species, wood frog tadpole T3 

and T4 concentrations would gradually increase during development, reaching their 

highest concentrations during metamorphic climax. Triglyceride concentrations were 

expected to increase during pre- and prometamorphic phases and decline during 

metamorphic climax, coincident with a reduction in body mass.  

 

2.3 Materials and Methods 

2.3.1 Method development for whole body wood frog tadpole assays 

One of the goals of this assay development effort was to determine whether both 

the triglyceride and the thyroid hormone assays could be determined in the same tissue 
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homogenate from a single tadpole. This required the investigation of any potential effect 

of propyl-thio-uracil (PTU) on the triglyceride assay. Propyl-thio-uracil is an 

iodothyronine deiodinase (D2) enzyme inhibitor used in thyroid hormone assays to inhibit 

the in vitro activity of D2 in assay mixtures. It was also necessary to identify a solvent 

that was compatible both the triglyceride and thyroid hormone assays. Ethanol has been 

successfully used as a solvent in the thyroid hormone assay, but it was not known if it 

was lipophilic enough to extract triglycerides. 

 

2.3.1.1 Tissue homogenization and extraction 

The homogenization method was modified from whole body methods developed 

in fish (Weber et al., 2003) and lizards (Brasfield et al., 2004). Whole frozen tadpoles 

were thawed and minced on ice in 95% ethanol containing 1 mM 6-N-propyl-2-thiouracil 

(PTU, Sigma, Oakville, ON, Canada). Advanced preparation of this ethanol-PTU 

solution was done by dissolving 0.017g PTU in 100ml 95% ethanol. The minced sample 

was transferred into a glass vial and another 1X volume of ethanol-PTU solution was 

added. A smooth homogenate was then obtained using a Tissure Tearor® homogenizer 

(BioSpec Products, Bartlesville, OK, USA) at three 15 second intervals. The glass vials 

were capped and centrifuged at 2900 rpm for 10 min. at 4°C. After centrifugation, the 

supernatant was removed and a 50µL aliquot was collected and stored at –80 °C for 

triglyceride analysis. The pellet was extracted a second time with another 2X volume of 

ethanol-PTU solution and centrifuged as before. The combined supernatant from the two 

extractions was placed under a stream of N2 to evaporate the ethanol and reduce the 
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volume to the aqueous portion of the homogenate. The final extract was aliquoted and 

stored at –80 °C pending T3 and T4 analysis. 

 

2.3.1.2 Whole body tadpole triglyceride assay development  

The effect of PTU on the triglyceride assay was evaluated by dividing three large 

tadpoles into equal halves lengthwise and recording the mass of each half. One half of 

each tadpole was subsequently homogenized in a standard 95% ethanol solution, and the 

other half was homogenized in 95% ethanol-PTU solution. To assess any interference of 

PTU with the triglyceride assay, the amount of total triglyceride measured in each half of 

the tadpoles was compared.  

 

2.3.1.2.1 Triglyceride assay 

The tadpole whole body triglyceride assay was based on a method developed in 

juvenile fish by Weber et al. (2003), which uses a commercially available kit (Sigma, 

Saint Louis, MO, USA). The initial step in the triglyceride assay produces free glycerol 

from acyl glycerides (mono-, di- and triglycerides) with lipase. Glycerol content is then 

ascertained in samples and glycerol standards spectrophotometrically via a colourimetric 

reaction after the addition of glycerol kinase. 

 

2.3.1.3 Whole body tadpole thyroid hormone assay development  
 

Spike recoveries were performed to evaluate the extraction efficiency of the 

thyroid hormone assays. After tadpole homogenization, the homogenate was divided into 

two equal volumes. The first aliquot (volume within a range of approximately 250µL – 
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510µL) was spiked with 50µL of 7.5 ng/mL T3 and 50µL of 250 ng/mL T4, obtained from 

enzyme-linked immunosorbent assay (ELISA) kits (BioQuant, San Diego, CA, USA) 

(spike and endogenous T3 or T4). An equivalent amount of water (100µL) was added to 

the second aliquot (endogenous T3 or T4 only). A third sample consisted of 50µL of 7.5 

ng/mL T3 and 50µL of 250 ng/mL T4 added to reagent-grade water (spike amount). The 

T4 and T3 hormone concentrations were measured in all three samples. The average 

percent recovery, measured as [(spike and endogenous T3 or T4 - endogenous T3 or 

T4)/spike amount] x 100%, for T3 from the spiked samples was 51.3% (± 2.9%).The 

average recovery for T4 was higher at 69.7% (± 5.5%). Percent recovery increased with 

the amount of tissue used, such that 0.50g was determined to be the minimum amount of 

tissue required. 

 

2.3.1.3.1 Thyroid hormone assays 

Whole-body tadpole T3 and T4 concentrations were measured using commercial 

enzyme-linked immunosorbent assay (ELISA) kits (BioQuant, San Diego, CA, USA).  

 

2.3.2 Association of triglyceride and thyroid hormone concentrations with tadpole 
development 

 
After assay optimization, they were used to measure whole body T3 and T4 and 

triglyceride concentrations in developing wood frog tadpoles, to evaluate changes in 

these critical endpoints throughout the course of development and metamorphosis. 
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2.3.2.1 Animal husbandry and sampling of wood frog tadpoles  

Newly-fertilized wood frog egg masses were collected from local Saskatchewan 

water bodies with minimal exposure to agricultural chemicals or other environmental 

contaminants in April-May of 2006. Each egg mass was placed in four litres of 

dechlorinated tap-water in a 11.7x20.8x34.0 cm plastic container in one of two controlled 

environmental chambers at 10ºC. The containers were continuously aerated using an air 

stone, and subjected to 16 hours of full spectrum light and eight hours of darkness per 

day. Once the eggs started to hatch, tadpoles from different egg masses were randomly 

allocated to different containers at a density of 15 tadpoles per four litres. There were 7 

replicate containers in each environmental. The temperature of the environmental 

chamber was gradually increased from 10ºC to 22ºC over the course of development to 

mimic water temperature in the source ponds. Once the tadpoles started feeding, their diet 

consisted of boiled green lettuce and ground Tetramin® tropical fish flakes. The food 

was replaced every second day along with half of the water volume. Basic water quality 

parameters such as conductivity (517-589 µs/cm), pH (7.24-8.18), hardness (132-143 mg 

CaCO3/L), alkalinity (92-94 mg/L), ammonia (0.06-0.17 mg/L) and dissolved oxygen 

(DO) (6.0-8.74 mg/L) levels were monitored on a weekly basis to ensure that they 

remained within acceptable ranges. 

Tadpoles were collected at specific developmental stages (Gosner stages 19 to 46) 

from containers in both environmental chambers, weighed and stored in cryovials at -

80°C pending analysis. Because newly-hatched tadpoles were too small to effectively be 

used for the whole body tadpole triglyceride and thyroid hormone assays, individual 

animals were pooled to achieve a minimum mass of 0.50g per replicate.  
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2.3.3 Statistical analyses 
 
Samples obtained from the two environmental chambers were pooled for both the 

triglyceride and thyroid hormone assays in order to increase the sample size, n, for a 

given Gosner stage. To determine if samples from the different chambers could be 

pooled, a t-test was conducted to compare sample means from T3, T4 and triglyceride 

assays at each Gosner stage from the two environmental chambers. Log transformation 

was used for data that failed normality.  

Parametric one-way ANOVA and non-parametric Kruskal-Wallis one-way 

ANOVA on ranks were done to test significant differences. Multiple comparisons were 

performed with Tukey’s (parametric ANOVA) and Dunn’s (non-parametric ANOVA) 

test. Where needed, data was normalized using log and arcsine transformations. To assess 

the relationship between endpoints (TG and T4; TG and T3), Pearson product moment 

correlations were used. The correlation coefficient (r) was given at p < 0.05 for all 

correlations. The results are expressed as mean ± SEM. 

Six determinations of a pooled sample were used to assess intra-assay variability 

for each of the three endpoints (triglycerides, T3 and T4). In addition, the same pooled 

sample was run six more times on separate occasions to evaluate inter-assay variability.  
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2.4 Results 
 
2.4.1 Whole body tadpole thyroid hormones and tadpole development  
 
 Figure 2.1 shows the concentrations of both T3 and T4 hormones (graph A), as 

well as the ratio of T3 to T4 concentrations (graph B) measured in whole body 

homogenates of wood frog tadpoles over the course of development. Samples for T4 

analysis collected from the two environmental chambers were pooled after results of a t-

test on log-transformed data indicated a probability of no difference between chambers 

(P=0.774). Samples for T3 analysis collected from both chambers were also pooled after 

results of a t-test indicated a probability of no difference between the means (P=0.253).  

 There were significant differences in tadpole whole body T3 and T4 

concentrations over time. Whole body tadpole T3 concentrations were lowest during 

premetamorphosis, at Gosner stages 22-24 (0.68 ng/g tadpole). The T3 concentrations 

increased significantly (P<0.05) during prometamorphosis, with concentrations of 2.96 

and 3.40 ng/g tadpole at Gosner stages 31-32 and 38-39, respectively. The highest T3 

concentration was observed during metamorphic climax at Gosner stage 43-44 (3.69 ng/g 

tadpole), although this value was not significantly greater than that measured at the end 

of prometamorphosis. The lowest whole body tadpole T4 concentration was also observed 

during premetamorphosis at Gosner stage 22-24 (17.1 ng/g tadpole). The T4 

concentrations increased significantly to peak during prometamorphosis, at Gosner stages 

31-32 (53.4 ng/g tadpole) and 34-35 (57.6 ng/g tadpole). T4 concentrations decreased 

during early metamorphic climax, followed by a second spike near completion of 

metamorphosis, at Gosner stages 45-46 (44.0 ng/g tadpole). There was a gradual increase 

in whole body T3/T4 ratio over the course of wood frog development. The lowest value 
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was observed during premetamorphosis at Gosner stages 22-24 (0.040), with the highest 

T3/T4 ratio measured during the metamorphic climax at Gosner stages 41-42 (0.105) and 

43-44 (0.100) (P<0.05).  

 Mean values from the individual developmental stages comprising each 

metamorphic period were grouped to produce a composite picture of the distribution of 

whole body tadpole T3 and T4 concentrations (Figure 2.2) and T3/T4 ratio (Figure 2.3) 

during wood frog metamorphosis. The grouped data demonstrate that mean T3 

concentration increased significantly (P<0.05) from premetamorphosis through 

metamorphic climax (graph A). Conversely, mean T4 concentration peaked during 

prometamorphosis and declined during metamorphic climax (graph B). A similar trend to 

T3 concentration was observed in whole body tadpole T3/T4 ratio (Figure 2.3). The ratio 

was lowest during premetamorphosis and increased steadily to peak during metamorphic 

climax (P<0.05).  
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Figure 2.2: Whole body tadpole 3,5,3’-triiodothyronine (T3) (A) and thyroxine (T4) (B) 
concentrations (ng/g tadpole tissue) during premetamorphosis (Gosner stages 19-31), 
prometamorphosis (Gosner stages 31-40) and metamorphic climax (Gosner stages 40-46) 
stages of wood frog (Rana sylvatica) development. Data shown are mean ± standard error 
of the mean. n=40-74 tadpoles per developmental period. Data were analyzed using 
parametric ANOVA followed by Tukey’s post-hoc test. Values marked with different 
letters were significantly different from each other (P<0.05). 
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Figure 2.3: Whole body tadpole 3,5,3’-triiodothyronine (T3):thyroxine (T4) ratio during 
premetamorphosis (Gosner stages 19-31), prometamorphosis (Gosner stages 31-40) and 
metamorphic climax (Gosner stages 40-46) stages of wood frog (Rana sylvatica) 
development. Data shown are mean ± standard error of the mean. n=40-74 tadpoles per 
developmental period. Data were analyzed using parametric ANOVA followed by 
Tukey’s post-hoc test. Values marked with different letters were significantly different 
from each other (P<0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 37



2.4.2 Whole body tadpole triglyceride concentration and tadpole development 
 
 Results of the preliminary triglyceride assay demonstrated that ethanol was a 

suitable solvent for extraction purposes and that homogenization in PTU did not affect 

the triglyceride assay. Figure 2.4 illustrates the change in wood frog whole body tadpole 

triglyceride concentrations during development and metamorphosis. Samples collected 

from the two environmental chambers were pooled after results of a t-test on log-

transformed data indicated a probability of no difference between chambers (P=0.171). 

Results indicate that mean whole body triglyceride concentrations were greater during 

prometamorphosis than during premetamorphosis and metamorphic climax (P<0.05). The 

highest triglyceride concentration was observed at the beginning of prometamorphosis at 

Gosner stages 31-32 (1.44 mg/g tadpole), with the lowest values occurring at 

metamorphic climax (Gosner stage 43-44) (0.55 mg/g tadpole). 

 Mean values from the individual developmental stages comprising each 

metamorphic period were grouped to produce a composite picture of the distribution of 

whole body tadpole triglyceride concentrations during wood frog metamorphosis (Figure 

2.5). The grouped data clearly demonstrate a significant increase in whole body 

triglyceride stores from pre- to prometamorphosis (P<0.05), with a subsequent decrease 

to minimal levels during metamorphic climax. 
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Figure 2.5: Whole body tadpole triglyceride concentrations (mg/g tadpole tissue) during 
premetamorphosis (Gosner stages 19-31), prometamorphosis (Gosner stages 31-40) and 
metamorphic climax (Gosner stages 40-46) stages of wood frog (Rana sylvatica) 
development. Data shown are mean ± standard error of the mean. n=50-76 tadpoles per 
developmental period. Data were analyzed using non-parametric Kruskal-Wallis one-way 
ANOVA on ranks followed by Dunn’s post-hoc test. Values marked with different letters 
were significantly different from each other (P<0.05). 
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2.4.3 Comparison of whole body tadpole triglyceride concentration with whole 
body tadpole thyroid hormone (T3 and T4) concentrations 

 
Whole body tadpole T3 and T4 concentrations were compared with whole body 

tadpole triglyceride concentration to investigate a potential relationship between these 

endpoints. No significant relationship was found between whole body triglyceride and T3 

concentrations (r = 0.148, p > 0.05). However, whole body triglyceride concentrations 

were correlated positively with whole body T4 concentrations (r = 0.641, p < 0.05) 

(Figure 2.6). 
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2.5 Discussion 
 

Whole body T3 and T4 and triglycerides were measured in wood frog tadpoles 

from hatching until completion of metamorphosis (Gosner stage 19 through 46). The 

objective of this study was to evaluate the association of these biomarkers with tadpole 

development, with a goal of producing baseline data that may provide a starting point in 

the application of these biomarkers to contaminant site assessment.  

It was hypothesized that the concentration of whole body T3 and T4 would peak 

during metamorphic climax, around Gosner stages 40-43, consistent with other 

amphibian species. Studies with Xenopus laevis suggest that plasma levels of both T3 and 

T4 hormones were highest during metamorphic climax (Leloup and Buscaglia, 1977). 

Regard et al. (1978) measured T3 and T4 hormone concentrations in the plasma of Rana 

catesbeiana tadpoles, which demonstrated peak T3 and T4 values during Gosner stages 

42-44.  This result was similar to Mondou and Kaltenbach (1979), who also reported 

maximum T4 concentrations in Rana catesbeiana at Gosner stage 42-44.  In addition, 

Weber et al. (1993) observed peak whole body T3 and T4 concentrations in Bufo marinus 

at Gosner stage 43.    

In the present study, whole body tadpole T3 concentration followed the expected 

trend, generally increasing to peak during metamorphic climax. The increasing 

concentration of T3 observed during premetamorphosis may reflect the increased energy 

requirements for rapid growth and initial development of structures such as the mouth for 

ingestion of food, muscle tissue for transforming into a free-swimming larva, and initial 

hind limb development between Gosner stages 26-30.  
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In contrast to the pattern observed with T3, the change in T4 concentration relative 

to development observed in this study was different than those reported for other frog 

species. Whole body T4 concentrations peaked during prometamorphosis, not 

metamorphic climax, as originally predicted. The observed differences in the timing of 

thyroid hormone peaks in this species may reflect different targets for T3 and T4, 

depending on the developmental stages. Of the two thyroid hormones, T3 binds to thyroid 

hormone receptors with about 5- to 10-fold higher affinity than T4. However, both T3 and 

T4 can activate thyroid hormone-dependent target genes and induce metamorphosis (Shi, 

2000).  

The T3/T4 ratio was highest during metamorphic climax, since increases in T3 

levels exceeded those for T4. Cai and Brown (2004) demonstrated that during 

metamorphic climax, expression of enzyme type II iodothyronine deiodinase (D2) is 

concentrated in target tissues that will undergo extensive remodeling, such as the 

intestine and the tail, where T4 is converted into T3. Both T3 and T4 can also be 

inactivated in tissue through the action of type III iodothyronine deiodinse (D3), thus D2 

and D3 are deiodinase enzymes that regulate the local concentration of the active 

hormone T3, in order to control the timing of developmental events in metamorphosis 

(Cai and Brown, 2004). In Rana catasbeiana, D2 activity correlates strongly with 

metamorphosis, whereas the peak levels of the D3 activity do not. Therefore, T3 and T3/ 

T4 ratio are expected to be highest during metamorphosis. High levels of D2 activity have 

been shown to be present in a specific organ undergoing metamorphosis, with low or 

undetectable levels present at other stages (Brown and Cai, 2007). For example, D2 

activity is high in the hind limb during early stages of metamorphosis when limb 
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morphogenesis takes place, but it is low at a later developmental stage when the limb 

merely increases in size. Likewise in the tail, little D2 is present in pre- and 

prometamorphic tadpoles, but high levels are present at the climax when the tail resorbs 

rapidly. In contrast, high levels of D3 activity are achieved at earlier stages before tail 

metamorphosis (Becker et al., 1997). Thus, an appropriate balance of the deiodinase 

activities is needed to coordinate tissue specific metamorphosis. This is consistent with 

the findings of this study, where highest whole body tadpole T3 concentrations were 

observed during metamorphic climax, possibly due to the D2-mediated conversion of T4 

to T3. In contrast, highest whole body tadpole T4 concentration was seen during 

prometamorphosis, when D2 activity is generally lower. Consequently, the T3 and T4 ratio 

can vary from tissue to tissue, depending upon the levels of various deiodinases (Shi, 

2000).  

Maximum triglyceride levels were observed during prometamorphosis, with the 

lowest concentrations occurring during metamorphic climax. The increasing 

concentrations observed during premetamorphosis can be attributed to uptake of stored 

triglycerides from consumption of the egg yolk. The yolk lipid provides not only the 

major energy source but also a supply of nutritionally essential tissue components (Noble 

and Moore, 1964; Manolis et al., 1987). Yolk-derived triglycerides may be used for 

energy until Gosner stage 25, which marks the beginning of feeding for the tadpole. The 

gradual increase in triglyceride concentration observed during prometamorphosis in 

preparation for metamorphic climax would be physiologically beneficial, since tadpole 

mouthparts undergo drastic changes such that there is no feeding during metamorphic 

climax. The animal must therefore rely on stored energy.  
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The high triglyceride concentrations observed in this study during 

prometamorphosis were consistent with measures of fat concentrations in other anurans. 

Gramapurohit et al. (1998) observed increased fat storage during pre-metamorphic 

climax in other species, including Rana curtipes, Rana cyanophylycitus, Rana tigrina and 

Polypedatus maculatus. Concentrations of whole body lipid were reported to be lower 

during premetamorphosis, increasing during prometamorphosis, and declining during 

metamorphic climax in Rana catesbeiana (Blem, 1992). 

Previous work indicates that thyroid hormones tend to favour lipogenesis in 

anuran amphibians. Lipogenesis encompasses the processes of fatty acid synthesis and 

subsequent triglyceride synthesis. Treatment of Rana temporaria with T4 decreased 

plasma fatty acid levels of cold-acclimated frogs but had no effect on warm-acclimated 

animals (Harri and Puuska, 1973). Both T3 and T4 enhanced in vivo lipogenesis in the 

liver and fat body of Rana esculenta (Kasprzyk and Obuchowicz, 1980). In the present 

study, whole body tadpole triglyceride concentrations were correlated with T3 and T4 

concentrations to evaluate this potential relationship in developing wood frogs. Results 

indicated a positive relationship between triglyceride and T4 concentrations, but no 

relationship was seen between triglyceride and T3 concentrations. The positive 

correlation between T4 and triglycerides may be due to their presence in relatively high 

amounts at the same stages of wood frog metamorphosis. Amphibian larvae need 

increased lipid reserves as they enter metamorphic climax and stop feeding due to 

changes in oral and digestive morphology (Beck and Congdon, 2003). Therefore, in this 

instance, increasing T4 concentrations did appear to induce lipogenesis, which was 
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supported by the similarity between distribution of triglycerides and of T4 concentrations 

during wood frog development. 

The present study examined changes in whole body concentrations of thyroid 

hormones (T3 and T4) and triglycerides from early development through metamorphosis 

of wood frog tadpoles. No previous studies of anuran tadpoles have measured both whole 

body triglyceride and thyroid hormones concurrently, using the same sample. Therefore, 

this study describes a novel application of the multiple biomarker approach to evaluating 

the health of amphibians during a critical stage in their life history. This approach is 

useful for reducing sample-to-sample variability and correlating the two measures.  

This approach to tadpole biomarker measurement was developed to provide tools 

to evaluate the potential adverse effects of exposure to water and sediment from 

reclaimed oil sands wetlands on wood frog growth and development. Wood frogs are 

native to the oil sands ecosystem of northern Alberta, and were therefore chosen as the 

species in which to develop the triglyceride and thyroid hormone assays. Contaminant 

induced changes in tadpole thyroid hormone or triglyceride levels could delay or prevent 

successful metamorphosis and adversely impact frog populations.   
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CHAPTER 3 
3.0 Occurrence and overall body condition of wood frogs in reclaimed oil sands wetlands 
 
 
3.1 Abstract 
 

Extraction of oil from Athabasca oil sands deposits produce large volumes of 

contaminated process-affected water (OSPW) which must be retained on site. Efforts are 

underway to reconstitute the OSPW into reclaimed wetlands after mining is complete. 

These wetlands need to provide suitable habitats for aquatic and semi-aquatic organisms 

such as wood frogs (Rana sylvatica), an abundant native species. The objective of this 

study was to determine potential detrimental effects of OSPW and process-affected 

sediments on the growth and development of wood frogs. In summer 2005, surveys were 

conducted to assess the presence of wood frogs in 29 reclaimed wetlands containing 

OSPW and five unimpacted reference sites. Tadpoles and newly-metamorphosed wood 

frogs were collected from three unimpacted reference ponds and six ponds containing 

OSPW in an initial attempt to evaluate contaminant effects on amphibian health. 

Endpoints evaluated included hepatic glycogen concentration in newly-metamorphosed 

frogs, and whole body triglyceride and thyroid hormone (3,5,3’-triiodothyronine [T3] and 

thyroxine [T4]) concentrations in tadpoles collected at Gosner stage 37-43. Morphometric 

endpoints such as weight, length and overall condition of wood frogs were also assessed.  

From the surveys conducted in the field, it was determined that 60% of OSPW-

impacted wetlands registered use by the adult amphibian population in the region. Wood 

frog tadpoles and newly-metamorphosed frogs were also collected from 37% and 30% of 

the OSPW sites, respectively. Significant differences (P<0.05) were observed among 

OSPW sites with regard to mean hepatic glycogen concentrations in newly-
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metamorphosed wood frogs (n=6-17 frogs/site). However, frogs from most OSPW sites 

were not different from those from reference ponds. Tadpoles from two OSPW sites had 

decreased whole body triglyceride concentrations (1.11 and 0.998 mg/g tadpole) (n= 8-19 

tadpoles) compared to one reference pond (2.10 mg/g tadpole) (P<0.05), but there were 

no other significant differences between OSPW-exposed and unexposed tadpoles. There 

was no consistent exposure-related effect on tadpole whole body T3 concentration in 

tadpoles (n=16-20 tadpoles/site). Tadpoles from one reference site had greater T3 

concentrations (2.19 ng/g tadpole) than two impacted sites (1.50 and 1.42 ng/g tadpole) 

(P <0.05), but one of the other reference sites was also low (1.60 ng/g tadpole). No 

differences in mean whole body T4 concentrations (P=0.11) and the ratio of T3/T4 

(P=0.154) concentrations were observed among tadpoles from any of the wetlands.  

Significant differences were observed in mean body weight and total length of 

newly-metamorphosed frogs from reference and OSPW wetlands, but the differences 

were not related to contaminant exposure. Similarly, significant differences were 

observed in mean body weight, total length and body condition of wood frog tadpoles 

from reference and OSPW wetlands, but no consistent exposure related effect was 

detected. 

 

3.2 Introduction 
  

Containment and elimination of process-affected materials as well as restoration 

of mined land are the greatest environmental challenges facing oil sand mining 

companies. Oil sands process-affected waters (OSPW) resulting from oil extraction are 

known to contain elevated levels of dissolved organic matter (naphthenic acids), salts and 
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hydrocarbons (polycyclic aromatic hydrocarbons). Concentrations of sodium, sulfate and 

chloride ions are often particularly high, and may represent the greatest stressor for many 

native fresh-water plants and invertebrates, resulting in potential changes in aquatic 

communities (Hart et al., 1990). Pollet and Bendell-Young (2000) noted reduced survival 

and growth, as well as increased incidence of deformities in Rana sylvatica tadpoles 

exposed to wetlands most heavily impacted by oil sands effluent. Studies with fish 

exposed to OSPW showed adverse affects on growth and survival. Peters (1999) 

observed increased mortalilty and deformities in Japanese Medaka (Oryzias latipes) 

embryos with increasing concentrations of OSPW, whereas Colavecchia et al. (2004) 

reported decreased hatching success and increased mortality and malformations in 

fathead minnow (Pimephales promelas) eggs and larvae exposed to process-affected 

materials. 

Process affected water that cannot be reused in the extraction process is released 

into settling basins, which allow the settling of larger suspended sand grains as well as 

the smaller clays, silts, fine sands and other particulates. The result is a watery mixture 

referred to as fine tails (FT). Mature fine tails (MFT) is a term referring to fine tails that 

are older and contain less water. Reclamation of oil sands properties will include 

incorporation of large volumes of OSPW and tailings into man-made wetlands. The 

suitability of these wetlands for use by native wildlife is uncertain. 

 Amphibians may be good indicators to evaluate the viability of these wetlands as 

successful habitats. Shell-less eggs laid in water hatch into gill-breathing larvae with 

intimate contact with contaminated sediment, which metamorphose into semi-aquatic 

adults with permeable skin. Therefore, amphibians are vulnerable to toxicants via 
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multiple exposure pathways throughout development. Sublethal concentrations of 

OSPW-associated toxicants may increase the susceptibility of frog eggs and larvae to 

pathogenic organisms and disease, or reduce larval survival by retarding growth and 

metamorphosis, such that tadpoles are unable to metamorphose and depart breeding 

ponds at the appropriate time. Contaminants that affect behaviour may inhibit the ability 

of larvae to avoid predators. Furthermore, toxicants that have estrogenic, antiestrogenic, 

thyroid-disrupting, androgenic, or anti-androgenic properties may either impair or totally 

inhibit future reproduction by disrupting developmental processes. Higher concentrations 

of toxicants might directly cause mortality of the eggs, larvae or metamorphosing 

individuals (Venturino et al., 2003). 

 Wood frogs (Rana sylvatica) are widely distributed in many ecoregions across 

North America. Their ability to withstand freezing enables the northern extension of their 

range farther than any other amphibian in the Western Hemisphere, and they are an 

abundant native species in the Athabasca oil sands.  

Morphometric (weight, length and condition factor) and biochemical (whole-body 

tadpole triglyceride and thyroid hormone concentrations, and hepatic glycogen content) 

measurements may be useful indicators of adverse affects of oil sand process materials to 

developing wood frogs using reclaimed wetlands. External measurements including 

weight, length and condition factor offer a rough assessment of overall condition of an 

animal. Weight can be an indicator of energy storage, whereas length relates to growth. 

Generally, better body condition is associated with greater weight for a given length. 

Fulton’s condition factor has been used previously to measure fitness level in fish (Bolger 

and Connolly, 1989) and amphibians (Gendron et al., 2003).  
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Thyroid hormones (3,5,3’-triiodothyronine [T3] and thyroxine [T4]) are critical in 

controlling the sequential anatomical and physiological changes that occur during 

amphibian metamorphosis (Shi, 2000). All organ systems, specifically the skin, sense 

organs, blood, musculoskeletal, immune, gut, and excretory systems, are known to 

undergo thyroid-mediated changes at larval and/or metamorphic stages (Gilbert et al., 

1996; Shi, 2000). Stress induced by contaminants can cause disruption of thyroid 

hormone production (Fort et al., 2004) and can prevent or retard typical development 

and/or metamorphosis (Crump et al., 2002).  

Total body triglyceride concentration is a useful indicator of body condition in 

many species including fish (Adams, 1999; Bennett, 2007) and amphibians (Ryuzaki and 

Oonuki, 1990).  Deposition and utilization of fat in anuran tadpoles may be dependent on 

the stage and duration of larval development, food abundance, expenditure of energy in 

search of food and predator avoidance. Fat bodies in adult anurans store excess energy 

during the period of food abundance (Gramapurohit et al., 1998). If adults are subject to 

contaminant stress and require more energy to metabolize xenobiotics or maintain 

homeostasis, they may store less energy in fat bodies (Venturino et al., 2003).    

In addition to triglycerides, glycogen also acts as an essential source of energy in 

amphibians. Glycogen can be mobilized and converted to glucose to provide immediate 

energy more readily than lipids (Rocha-Leao, 2003), but it is also depleted at an increased 

rate, and yields less energy per gram than fat (Wells, 2007). Glycogen is stored mainly in 

the liver, but is also found in muscle and fat cells. Muscle glycogen in particular serves as 

an energy source during mechanical work. Hepatic glycogen may act as an important 

energy source during tadpole development. In metamorphosing Xenopus laevis larvae, 
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liver glycogen content increased from 0.2 to 10% of liver weight from prometamorphosis 

until the end of metamorphic climax (Fox, 1984). 

Wood frogs hibernate at the soil surface in sites with a good cover of damp leaf 

litter to prevent desiccation. When ice penetrates these sites, frogs cannot avoid freezing 

because their highly water permeable skin presents no barrier to the propagation of ice. 

Freezing for the wood frog begins when body fluids are seeded across the epidermis 

when in contact with environmental ice at or below the freezing point of body fluids 

(Storey and Storey, 1996a). Glycogen (approximately 180mg/g) stored in the liver 

preceding hibernation is essential for cryoprotectant synthesis in wood frogs. Once the 

freezing begins, glucose concentrations in blood and liver increase by 3.3 and 6.6 fold, 

respectively, as glycogen reserves are metabolized. Glucose production continues until it 

is stopped following freezing of the central circulation (Storey and Storey, 1996b). 

Exposure to any stressor, including environmental contaminants that decrease pre-

hibernation glucose storage, could adversely affect the overwintering survival of wood 

frogs.  

This study represents an initial assessment of the use of reclaimed oil sands 

wetlands by native wood frogs, and a preliminary evaluation of the ability of these 

wetlands to support tadpole growth and development. The specific wetlands evaluated 

were created on reclaimed areas, made out of tailings, or had potential OSPW seepage 

from various sources. Wood frogs inhabiting these wetlands were exposed to a complex 

mixture of potentially toxic compounds, the composition (and likely toxicity) of which 

varied with the type of effluent and history of each site.  
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Selected reclaimed and unimpacted (reference) wetlands on Suncor and Syncrude 

lease holds were surveyed for amphibian use in the spring and summer of 2005. Wood 

frog tadpoles and newly-metamorphosed frogs were collected from the surveyed 

wetlands to evaluate relative body condition of tadpoles (whole body triglyceride 

concentration) and frogs (hepatic glycogen), and potential impact on thyroid function 

(whole body tadpole T3 and T4 concentrations). It was hypothesized that whole body 

tadpole thyroid and triglyceride concentrations, hepatic glycogen concentration, and 

overall body condition of animals collected from wetlands with oil sands process-affected 

materials would be less than specimens from reference wetlands.  

 

3.3 Materials and Methods 
 

3.3.1 Site selection and water quality 
 

A number of process-affected (OSPW) and unimpacted wetlands were selected 

for a preliminary assessment of their suitability as habitats for wood frog tadpoles and 

froglets. These wetlands were characterized based on their status (OSPW or reference) 

and their history (Table 3.1). Wetland age was also determined by assigning them the 

status of “young” or “old”. Young wetlands were seven years old or less and old wetlands 

were eight years or older. Water quality variables including conductivity, pH and ionic 

content were determined for each wetland by collecting water samples in close proximity 

to where amphibian life was noted or suspected. Water quality analysis was conducted by 

the oil sand companies, Syncrude and Suncor, on whose lands the wetlands were situated. 
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Table 3.1: Description of unimpacted reference and process-affected (OSPW) wetlands in 
the Athabasca oil sands from which wood frog (Rana sylvatica) tadpoles and froglets 
were collected during the summer of 2005. 
 

Name and 
Company Lease Age OSPW or 

Reference History and Description 

Senor Frog 
(Syncrude) Young Reference 

 
- 80% cattail cover 
- contains no OSPW 
 

SCL 1 (Syncrude) Old Reference 

 
- 10% cattail cover 
- Contains natural surface water 
from an unimpacted site to a 
maximum depth of 5 meters 
- Minnows and White Suckers 
were added in 1990 
- A well developed aquatic 
macrophyte community is 
present. 
 

Highway (None) Old Reference 

 
- 30% cattail cover 
- Unknown history 
 

Golden (Syncrude) Young OSPW 

 
- 2% cattail cover 
- A man-made wetland completed 
in 2002 
- It receives runoff water from 
adjacent hill slopes and another 
OSPW site  
- Usually has a small pond 
attached on the north and south 
ends that tend to attract 
amphibian life 
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Table 3.1: Description of unimpacted reference and process-affected (OSPW) wetlands in 
the Athabasca oil sands from which wood frog (Rana sylvatica) tadpoles and froglets 
were collected during the summer of 2005. (Continued…) 
 

Name and 
Company Lease Age OSPW or 

Reference History 

SCL 13 (Syncrude) Old OSPW 

 
- 20% cattail cover 
- Approximately 70,000 m3 of 
water from another OSPW site 
was transferred in 1993  
- Intended to be storage area for 
the capping water for another 
OSPW site 
 

B1 (Syncrude) Old OSPW 

 
- 15% cattail cover 
- Seepage of oil sands process-
affected materials from other 
OSPW sites 
 

B2 (Syncrude) Old OSPW 

 
- 75% cattail cover  
- Seepage of oil sands process-
affected materials from other 
OSPW sites. 
 

V-Notch Weir 
(Suncor) Old OSPW 

 
- 30% cattail cover 
- Made up with mainly surface 
runoff water from the adjacent 
peat mineral stockpiles 
- Also some ground discharge 
from other OSPW sites 
 

Weir 11 (Suncor) Young OSPW 

 
- 5% cattail cover  
- Amphibian life had not been 
noted since approximately 2003.  
- Contains runoff water  
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3.3.2 Surveys of oil sands process-affected and reference wetlands for amphibian 
use 

 
A series of visual encounter surveys were conducted in the spring and summer of 

2005 to identify the presence of adult wood frogs, boreal chorus frogs and Canadian 

toads, as well as the location of egg masses and tadpoles. Visual encounter surveys were 

performed by walking the perimeter of the wetland (or representative section of wetland 

when perimeter was greater than approximately 1.5 miles) and noting any indicators of 

amphibian use (Droege, USGS Patuxent Wildlife Research Center). Amphibian use was 

further assessed by use of call surveys, which were conducted by listening carefully for 5-

10 minutes and rating the intensity of the calling according to the Wisconsin Frog and 

Toad Survey (Appendix 1) (Droege, USGS Patuxent Wildlife Research Center).  

 

3.3.3 Collection of biological samples 
 

Minnow traps baited with cat food were placed in OSPW and reference wetlands 

when wood frog tadpole development progressed to the point of hind limb emergence. 

Wood frog eggs were laid earlier and tadpoles hatched and developed ahead of boreal 

chorus frogs and Canadian toads so species were easy to differentiate. Minnow traps were 

left in each pond and checked approximately every three days from June 13 through July 

8, 2005 (Figure 3.1), when it was rare to catch a single tadpole. Tadpoles collected from 

the minnow traps were euthanized by overdose of 20% benzocaine gel (Orajel®) applied 

to the tops of their heads. Tadpoles were measured to determine total body length and 

weight, and immediately placed in cryovials and frozen in liquid nitrogen for subsequent 

analysis of whole body triglyceride and thyroid hormone concentrations.  
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Figure 3.1: Checking a minnow trap for wood frog (Rana sylvatica) tadpoles. Tadpoles 
reaching Gosner stages 37-43 (start of hind limb development) were collected. 
 
 

Newly-metamorphosed wood frogs were captured as they emerged from their 

natal wetlands using a series of pit fall traps and drift fences located along the perimeter 

of the pond (Herpetological Animal Care and Use Committee, 2004). Pitfall traps were 

dug into the ground approximately 1.5 m apart from one another and located along drift 

fences placed about two m. from the littoral zone of the wetland. Newly-metamorphosed 

froglets were chosen to relate water quality of wetlands to the health of amphibians 

because their origin and exposure history could be established. The objective of the pitfall 

traps was to capture wood frogs, not estimate populations. Therefore, the location, 

number of traps, and length of drift fences were chosen based on observations and visual 

encounter surveys, and consequently were not consistent among wetlands (Figure 3.2). 

Pit fall traps were checked every 24 hours, and newly-metamorphosed wood frogs were 

euthanized by applying 20% benzocaine gel (Orajel®) on the dorsal aspect of the 

cranium. Total body length and weight were measured for each froglet, and the liver was 

removed immediately and the right lobe frozen in liquid nitrogen for subsequent 

glycogen measurement.  
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             (a)            (b) 
 
Figure 3.2: Pit fall traps (a) and a representative length of drift fence (b) located along the 
perimeter of a wetland to trap newly-metamorphosed emerging wood frogs (Rana 
sylvatica). 
 
 
 
3.3.4 Biological assays 
 

A newly developed technique (modified from Weber et al. 2003 and Brasfield et 

al. 2004) was applied to the wood frog tadpoles for measuring whole body tadpole 

triglyceride and T3 and T4 concentrations.   

 

3.3.4.1 Thyroid Hormone Assays 
 

Whole-body T3 and T4 concentrations were measured in wood frog tadpoles using 

a commercial enzyme-linked immunosorbent assay (ELISA) kit (BioQuant, San Diego, 

CA, USA) as described in section 2.3.1.3.1 of Chapter 2. 

 
 
3.3.4.2 Triglyceride Assay 
 

The triglyceride assay was based on a method developed in juvenile fish by 

Weber et al. (2003). Tadpole whole body triglyceride concentrations were measured 

using a modification of a commercial kit protocol (Sigma, Saint Louis, MO, USA) as 

described in section 2.3.1.2.1 of Chapter 2. 
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3.3.4.3 Glycogen Assay 
 

The glycogen assay was based on a method developed by Gómez-Lechón et al. 

(1996) and used in juvenile fish by Weber et al. (2008). Hepatic glycogen concentrations 

in newly-metamorphosed wood frogs were determined using purified Type IX bovine 

liver glycogen (Sigma-Aldrich) as a standard (0.05-20 µg/ml for standard curve).  

A motorized Teflon pestle (Glas-Col®) was used to homogenize the liver samples 

(weighing 10 mg or more) with 3X volume of ice cold citrate buffer (tri-sodium citrate 

EM omnipure, VWR). Another 2X volume of buffer was added to the homogenate (final 

homogenate had 5X volume buffer) once homogenization was complete. This 

homogenate was then heated for five minutes in a heat block at 100 ºC to inactivate 

endogenous amylase. It was stored at -80ºC until assayed for glycogen. During the assay, 

two microcentrifuge tubes were labeled per sample; one received the 50µl citrate buffer 

and the other received 50µl amylase (amyloglucosidase solution, Sigma-Aldrich). 

Amylase (50µl) was also added to each of the standards. All the tubes were then 

incubated at 37ºC for two hours. The standards and the samples were centrifuged (8000 

rpm for 10 minutes at 4ºC) and pipetted (40µl) onto a microplate. 10µl of 0.125 M NaOH 

and 200µl of PGO (peroxidase-glucose oxidase) enzyme solution (Sigma-Aldrich) were 

added to each well in the microplate. The PGO enzymes are useful for the quantitative 

enzymatic determination of glucose in aqueous solutions. Glycogen content was 

determined spectrophotometrically at 440nm (SpectraMax® 190) by deducting the value 

obtained without amylase from that obtained with amylase for each sample.  
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3.3.5 Statistical analyses  
 

Significant differences were tested using parametric one-way ANOVA followed 

by Tukey’s test for multiple comparisons, or non-parametric Kruskal-Wallis one-way 

ANOVA on ranks followed by Dunn’s test for multiple comparisons. Log and arcsine 

transformations were used to normalize the data, where required. To evaluate the 

relationship between endpoints (TG and T4; TG and T3), Pearson product moment 

correlations were used. The correlation coefficient (r) was given at p < 0.05 for all 

correlations. The results are expressed as mean ± SEM. 

Intra-assay variability was assessed for each of the four tests (T3, T4, triglycerides 

and glycogen), by making six determinations of a pooled sample. The same pooled 

sample was measured six more times on separate occasions to evaluate inter-assay 

variability.  

 

3.4 Results 
 

3.4.1 Site selection and water quality 
 

Water samples were collected from the three reference and six OSPW-impacted 

wetlands from which most of the biological samples were obtained. The samples were 

analyzed for major ions and other water quality variables commonly measured on oil 

sands sites (Table 3.2). Total conductivity was generally higher in the impacted sites, 

such as, B1, B2 and Golden Pond, although Weir 11 and SCL 13 were exceptions. The 

pH values were similar among the wetlands, ranging from 7.11 to 8.19. Ammonia (NH3) 

concentrations were below detection limit (BDL) for some wetlands, and, where 

measurable, were highest in oil sands process-affected wetlands (V Notch Weir, Weir 11, 
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B1 and B2). Naphthenic acids were measured in only four wetlands. However, where 

naphthenic acid concentrations were determined, the oil sands process-affected wetlands 

(V Notch Weir, Weir 11 and SCL 13) demonstrated significantly higher values than the 

reference wetland (Highway Pond). Concentrations of most major ions (Na+, Cl-, Mg2+ 

and HCO3), were higher in wetlands with process-affected materials.  

 
 
Table 3.2: Summary of water quality measurements obtained by Syncrude Canada Ltd. 
and Suncor Energy Inc. in summer 2005, for oil sands process-affected and reference 
wetlands in Athabasca oil sands, Alberta. 
 

SITE 
COND. 
(µs/L) i pH 

NAPH. 
ACIDS ii 
(mg/L) 

NH4 
(ppm) 

Na+ 
(mg/L) 

K+ 
(mg/L) 

Mg2+ 
(mg/L) 

Ca2+ 
(mg/L) 

Cl- 
(mg/L) 

SO4 
(mg/L) 

HCO3 
(mg/L) 

SCL1 
(Ref.) 811 7.73 NA iii 0.13 70.1 0.1 27.8 66.8 13 292 185 

Senor 
Frog 
(Ref.) 

519 7.40 NA 
BDL 

iv 8.1 17.9 13.2 68.1 8.1 93.5 222 

Highway 
(Ref.) 444 7.11 1.0 BDL 44.4 0.1 11.7 36.7 53 44.7 152 

Golden 
(OSPW) 1939 7.59 NA BDL 122 0.1 70.3 249 37 875 353 

V Notch 
Weir  

(OSPW) 
1289 7.68 7.0 0.47 180 12.7 36.3 70.5 38 451 293 

Weir 11 
(OSPW) 368 8.19 6.0 0.57 735 0.1 22.8 49.5 1200 125 231 

SCL13 
(OSPW) 595 8.13 8.0 BDL 55.8 5.3 21.3 39.3 15.0 106 239 

B1 
(OSPW) 2720 7.98 NA 0.2 567 0.1 36.9 83.3 520 77.5 897 

B2 
(OSPW) 2220 7.20 NA 0.2 363 0.1 42.1 119 330 179 746 

 
i) Cond. (µs/L) = Conductivity (microsiemens/litre) 
ii) Naph. Acids (mg/L) = Napthenic Acids (milligrams/litre) 
iii) NA = Not available 
iv) BDL = Below Detection Limit 
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3.4.2 Presence of wood frogs on reclaimed, oil sands process-affected and reference 
sites 

 
Amphibian species reported from call surveys and visual encounter surveys were 

wood frogs, boreal chorus frogs and Canadian toads. Western toads and northern leopard 

frogs were initially thought to be observed in this area but none were observed. Table 3.3 

summarizes the results of visual encounter and call surveys, indicated as presence (+) or 

absence (-) of adults at each wetland, and the number of wood frog tadpoles and newly-

metamorphosed froglets collected from a total of 29 OSPW and five reference sites. 

Adult frogs were noted on 62% of OSPW and 60% of reference sites. Wood frog tadpoles 

were collected from 34% of OSPW and 80% of reference wetlands, whereas 31% of 

OSPW and 60% of reference sites had newly-metamorphosed froglets. 

Table 3.4 summarizes the collection of wood frog samples from a subset of 

process-affected and unimpacted wetlands for the measurement of whole body tadpole T3 

and T4 and triglyceride concentrations, and hepatic glycogen concentration from newly-

metamorphosed froglets.  

 

3.4.3 Morphometric measurements in newly-metamorphosed wood frogs and 
tadpoles  

 
Weight and total length of Gosner stage 37-43 tadpoles trapped in reference and 

OSPW-impacted wetlands were compared using non-parametric Kruskal-Wallis ANOVA 

on ranks followed by Dunn’s post-hoc test. Tadpoles from Senor Frog (reference), V 

Notch Weir (OSPW) and B2 (OSPW) wetlands had significantly lower average body 

weights and total lengths than tadpoles from the other reference and OSPW wetlands 

(P<0.05) (Table 3.5). Tadpole condition factors were compared using the same statistical 
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analysis. Condition factor for tadpoles from B1 and B2 (OSPW) were significantly higher 

than tadpoles from the other OSPW and reference wetlands (P<0.05).  

Body weight of newly-metamorphosed wood frogs was compared using parametric 

ANOVA followed by Tukey’s post-hoc test, while total length of frogs was compared 

using non-parametric Kruskal-Wallis ANOVA on ranks followed by Dunn’s post-hoc 

test. Wood frogs from Golden Pond (OSPW) and SCL 1 (reference) had significantly 

higher average weight and body length compared with frogs collected from Senor Frog 

(reference) and V Notch Weir (OSPW) (P<0.05). Newly-metamorphosed frogs collected 

from Highway (reference) and SCL 13 (OSPW) also had significantly higher average 

body weights as compared to frogs from Senor Frog and V Notch Weir (Table 3.6). 

Condition factors of newly-metamorphosed frogs were compared using parametric 

ANOVA with log transformed data, followed by Tukey’s post-hoc test. Frogs from Senor 

Frog and Highway reference wetlands appeared to have the highest condition factors, but 

no significant differences were detected among any of the wetlands (P=0.081). 
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Table 3.3: Observed habitat use by wood frogs (Rana sylvatica) of reclaimed (OSPW) 
and unimpacted (reference) wetlands on Suncor and Syncrude lease lands in the 
Athabasca oil sands, Alberta. 
 

Company 
Sites Wetland 

Visual 
encounter/Call 
survey results 
[presence (+) 

and absence (-) 
of adult frogs] 

Number of 
tadpoles collected 

(Gosner stage  
37-43) 

Number of newly- 
metamorphosed 
frogs collected 

Off-Site Highway 
(Ref.) - 22 17 

Suncor Loon Lake 
(Ref.) + 0 0 

Suncor Senor Frog 
(Ref.) + 20 8 

Suncor Natural 
(OSPW) + 9 1 

Suncor V Notch Weir 
(OSPW) - 20 19 

Suncor Weir 11 
(OSPW) - 20 20 

Suncor Weir 7 
(OSPW) - 0 0 

Suncor Tar Island 
(OSPW) + 0 0 

Suncor Poplar 
(OSPW) + 0 0 

Syncrude SCL1  
(Ref.) + 20 6 

Syncrude WID 
(Ref.) - 4 0 

Syncrude Golden 
(OSPW) + 20 11 

Syncrude Bill's 
(OSPW) + 0 1 
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Table 3.3: Observed habitat use by wood frogs (Rana sylvatica) of reclaimed (OSPW) 
and unimpacted (reference) wetlands on Suncor and Syncrude lease lands in the 
Athabasca oil sands, Alberta. (Continued…) 
 

Company 
Sites Wetland 

Visual 
encounter/Call 
survey results 
[presence (+) 

and absence (-) 
of adult frogs] 

Number of 
tadpoles collected 

(Gosner stage  
37-43) 

Number of newly- 
metamorphosed 
frogs collected 

Syncrude Peat 
(OSPW) + 0 0 

Syncrude South Bison 
(OSPW) - 0 0 

Syncrude SCL2 
(OSPW) + 0 0 

Syncrude SCL3 
(OSPW) + 0 0 

Syncrude SCL4 
(OSPW) + 0 0 

Syncrude SCL5 
(OSPW) + 5 1 

Syncrude SCL6 
(OSPW) + 0 0 

Syncrude SCL7 
(OSPW) + 0 0 

Syncrude SCL8 
(OSPW) + 0 0 

Syncrude SCL9 
(OSPW) + 0 0 

Syncrude SCL10 
(OSPW) - 0 0 

Syncrude SCL11 
(OSPW) - 0 0 

Syncrude SCL12 
(OSPW) - 0 0 
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Table 3.3: Observed habitat use by wood frogs (Rana sylvatica) of reclaimed (OSPW) 
and unimpacted (reference) wetlands on Suncor and Syncrude lease lands in the 
Athabasca oil sands, Alberta. (Continued…) 
 

Company 
Sites Wetland 

Visual 
encounter/Call 
survey results 
[presence (+) 

and absence (-) 
of adult frogs] 

Number of 
tadpoles collected 

(Gosner stage  
37-43) 

Number of newly- 
metamorphosed 
frogs collected 

Syncrude SCL13 
(OSPW) + 22 14 

Syncrude SCL14 
(OSPW) - 0 0 

Syncrude South Black 
(OSPW) - 4 4 

Syncrude Seepage 
(OSPW) - 0 0 

Syncrude B1 
(OSPW) + 20 1 

Syncrude B2 
(OSPW) + 12 0 

Syncrude BBQ Beach 
(OSPW) - 7 0 

Syncrude Middle BC 
(OSPW) + 0 0 
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Table 3.4: Summary of wood frog (Rana sylvatica) tadpoles and newly-metamorphosed 
wood frogs collected from oil sands process-affected and reference wetlands on Suncor 
and Syncrude lease lands in the Athabasca oil sands, Alberta, for the measurement of 
whole body tadpole thyroid hormone (TH) and triglyceride (TG) concentrations, and frog 
hepatic glycogen concentration. 
 

 
Company 

 
Site 

 
Reference/OSPW 

 
Number of 
Tadpoles 
Analyzed 

 

 
Number 
of Frogs 
Analyzed 

   
TH         TG 

 

Syncrude Senor Frog Reference 19 18 8 

Syncrude SCL 1 Reference 19 17 6 

None Highway Reference 20 19 16 

Syncrude Golden OSPW 17 16 11 

Syncrude SCL 13 OSPW 20 17 14 

Syncrude B1 OSPW 18 16 0 

Syncrude B2 OSPW 0 8 0 

Suncor V-Notch Weir OSPW 16 14 15 

Suncor Weir 11 OSPW 18 17 17 
 
 

 

 



Table 3.5: Morphometric (weight, total length, condition factor) measurements determined in wood frog (Rana sylvatica) tadpoles, 
collected from several unaffected and oil sands process-affected wetlands in the Athabasca oil sands in Alberta in summer 2005. Data 
shown are mean ± standard error of the mean. Values marked with different letters were significantly different from each other 
(p<0.05). Condition factor = (weight/total length3)*100. 
 
 

 Unaffected/Reference Wetlands  Oil Sands Process-Affected Wetlands 

       SCL 1 Senor 
Frog 

Highway 
Pond Weir 11 V Notch 

Weir SCL 13 Golden 
Pond B1 B2

Sample 
Size 17          19 22 19 17 21 19 19 11

Weight 
(g) 2.03 ± 0.07a 1.46 ± 0.06b 1.77 ± 0.13a  2.07 ± 

0.10a
1.08 ± 
0.06b

2.12 ± 
0.06a

1.74 ± 
0.09a

2.25 ± 
0.18a

0.22 ± 
0.46b

Total 
Length 

(cm) 
5.34 ± 0.14a 4.74 ± 0.13b 5.11 ± 0.16a  5.68 ± 

0.10a
4.39 ± 
0.12b

5.77 ± 
0.08a

5.18 ± 
0.17a

5.19 ± 
0.17a

2.05 ± 
0.07b

Condition 
Factor 1.33 ± 0.06b 1.43 ± 0.09b 1.51 ± 0.29b  1.13 ± 

0.04b
1.30 ± 
0.08b

1.13 ± 
0.06b

1.42 ± 
0.25b

1.63 ± 
0.10a

3.26 ± 
1.37a
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Table 3.6: Morphometric (weight, total length, condition factor) measurements determined for newly-metamorphosed wood frogs 
(Rana sylvatica), collected from several unaffected and oil sands process-affected wetlands in the Athabasca oil sands in Alberta in 
summer 2005. Data shown are mean ± standard error of the mean. Values marked with different letters were significantly different 
from each other (p<0.05). Condition factor = (weight/total length3)*100. 
 
  

 Unaffected/Reference Wetlands  Oil Sands Process-Affected Wetlands 

 SCL 1 Senor Frog Highway 
Pond   Weir 11 V Notch 

Weir SCL 13 Golden 
Pond 

Sample Size 6        8 17 21 18 14 11

Weight (g) 1.16 ± 0.05a 0.85 ± 0.06b 1.08 ± 0.04a  1.03 ± 0.03a,b 0.87 ± 0.04b 1.11 ± 0.03a 1.19 ± 0.07a

Total 
Length (cm) 2.32 ± 0.06a 1.98 ± 0.08b 2.12 ± 0.04a,b  2.04 ± 0.10a,b 2.01 ± 0.02b 2.22 ± 0.03a,b 2.35 ± 0.08a

Condition 
Factor 9.28 ± 0.42a 11.5 ± 1.45a 11.5 ± 0.68a  10.6 ± 0.28a 10.6 ± 0.33a 10.3 ± 0.42a 9.37 ± 0.52a
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3.4.4 Whole body tadpole thyroid hormone analyses 
 

The results indicate that whole body wood frog tadpole T3 hormone 

concentrations were significantly lower in B1 (OSPW), Golden (OSPW) and Highway 

(reference) wetlands (P<0.05) compared to tadpoles from SCL 1, a reference site, which 

had the highest whole body tadpole T3 concentration (Figure 3.3, graph A). The T3 

concentrations in tadpoles from the other OSPW sites were not significantly different 

from the reference wetlands. No significant differences in whole body wood frog tadpole 

T4 hormone concentrations were observed among the unaffected and process-affected 

wetlands (P=0.110), although SCL 1 had the maximum whole body tadpole T4 

concentration (Figure 3.3, graph B). Data were log transformed to fit a normal 

distribution for T4. Figure 3.4 shows the whole body tadpole T3/T4 ratio. No significant 

differences were found among all sites, (P=0.154) although tadpoles collected from the 

SCL 1 wetland demonstrated the highest T3/T4 ratio. Arcsine transformation of data was 

performed for statistical analysis.  
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3.4.5 Whole body tadpole triglyceride analysis 
 

Mean whole body tadpole triglyceride concentrations were significantly lower in 

OSPW sites B1 and B2 (P<0.05) than in tadpoles from Senor Frog, a reference site, 

which had the highest whole body tadpole triglyceride concentration (Figure 3.5). 

Triglyceride concentrations in tadpoles from other OSPW sites were not significantly 

different from the reference sites. 
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3.4.6 Hepatic glycogen analysis in newly-metamorphosed froglets 
 

Results indicate that hepatic glycogen concentrations were significantly reduced 

in newly-metamorphosed froglets from three OSPW sites, Weir 11, SCL 13 and Golden 

pond (P < 0.05) compared to froglets from V Notch Weir, another OSPW site, which had 

the highest hepatic glycogen concentration (Figure 3.6). However, no significant 

differences were found in hepatic glycogen concentrations of frogs from OSPW sites 

compared to frogs from the reference ponds. 
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3.5 Discussion 

 
It was hypothesized that tadpoles and newly-metamorphosed frogs would 

demonstrate reduced growth and body condition, and thyroid gland dysfunction 

potentially associated with delayed metamorphosis. Wetlands on both Suncor and 

Syncrude lease lands with a wide range of site histories and water and sediment 

chemistries were surveyed for amphibian use, by assessing the presence of breeding 

adults, egg masses, developing tadpoles and emerging, newly-metamorphosed froglets. 

Gosner stage 37-43 tadpoles and newly-metamorphosed frogs were collected using 

minnow traps and pit fall traps, respectively, in both unimpacted reference and OSPW 

wetlands. Visual encounter and call surveys and trapping results demonstrated use of 

many OSPW-impacted Syncrude and Suncor sites by wood frogs. There were no readily 

discernible differences between wetlands with evidence of wood frog use and those 

without frogs. Previous studies by Bendell-Young et al. (2000) showed that although oil 

sands based wetlands would support a chironomid invertebrate community, fish would 

have difficulty surviving. This could indicate that if fish would not survive, organisms 

such as amphibians with aquatic life stages would also be adversely affected. The present 

study, although preliminary, indicates that many OSPW wetlands with diverse water 

chemistry and effluent history are being used by local populations of amphibians. 

Whole body tadpole triglyceride results indicated lower triglyceride 

concentrations in animals from B1 and B2 OSPW-impacted wetlands compared with one 

of the reference sites. Tadpoles from B2 wetland were also significantly smaller than 

those from other OSPW and reference sites. They appeared to be developmentally 

delayed, and were just beginning to develop hind limbs (Gosner 26-28); the 
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premetamorphic developmental stage that is associated with relatively lower energy 

stores. Previous studies have shown that amphibians undergoing premetamorphosis 

(Gosner stages 19-31) have reduced lipid concentrations as compared with lipid levels 

during prometamorphosis (Gosner stages 31-40) and metamorphic climax (Gosner stages 

40-46) (Blem, 1992). These results were also corroborated in Chapter 2 of this thesis, 

when whole body tadpole triglyceride concentrations were measured in wood frog 

tadpoles undergoing metamorphosis. Wood frog tadpoles from site B1 were relatively 

large in contrast to tadpoles from site B2, but animals from both sites had high condition 

factors in spite of lower triglyceride stores. Water from both B1 and B2 was characterized 

by high conductivity and high bicarbonate content compared to the unimpacted sites. 

High conductivities in the range of 500-2000µS have been known to cause reduced 

survival in Rana sylvatica embryos and larvae (Karraker, et al., 2008). High salt 

concentrations can also result in reduced growth in amphibians. Studies with Rana 

sylvatica have shown that elevated salinity can decrease developmental rates and levels 

of stored glucose and total proteins, in association with increased internal osmolality in 

larvae (Karraker, et al., 2008). Resource limitation can also obviously play a part in the 

inhibition of larval growth, resulting in smaller metamorph sizes and longer larval periods 

relative to other source ponds. Reduced tadpole body size may be associated with lower 

energy storage and diminished reproductive fitness in the adults (DiMauro and Hunter, 

2002).  

Hepatic glycogen is an essential, rapidly mobilizable energy source, as well as the 

primary source of cryoprotectant in wood frogs. The extent of the hepatic glycogen 

reserve is a major determinant of the quantity of glucose produced during freezing 
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(Costanzo and Lee, 1993). Hepatic glycogen concentrations in newly-metamorphosed 

wood frogs collected from three OSPW sites, Weir 11, SCL 13 and Golden Pond, were 

significantly lower than one other OSPW site, namely V Notch Weir which had frogs 

with the highest glycogen stores. This pattern was not consistent with the body condition 

of tadpoles collected from those sites, as represented by whole body triglyceride 

concentrations or condition factors, or with the body condition factor index of the frogs 

themselves. Previous work with amphibian tadpoles (Ptychadena bibroni) exposed to 

organophosphate pesticides have shown decreased body glycogen levels with increasing 

concentrations of chemical and exposure duration (Ezemonye and Ilechie, 2007). Studies 

with fish have shown depleted glycogen reserves with exposure to contaminants such as 

metals (Levesque et al., 2002; Teh et al., 2004) and pesticides (Nivedhitha et al., 1998). 

Therefore, the increase in hepatic glycogen concentration in wood frogs from an OSPW 

site was not expected. A possible explanation for reduced growth, but high glycogen 

concentration in frogs from an OSPW site could be the presence of metals in water and 

sediments from the wetland.  Metals such as lead, mercury, cadmium, chromium, 

manganese, molybdenum, nickel and cobalt have been known to cause hepatic 

glycogenolysis (Goodman and Ishak, 1999; Gill and Pant, 1981). However, studies done 

by Peplow and Edmonds (2005) demonstrated that exposure of rainbow trout 

(Oncorhynchus mykiss) to elevated levels of copper in sediments resulted in a metabolic 

disorder where food was converted to liver glycogen, but the glycogen was not converted 

back into glucose for normal distribution to the tissues. This effect resulted from 

inactivation of the glycogen branching enzyme leading to synthesis of an abnormal 

insoluble glycogen molecule with decreased branch points and increased chain length. 
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The inability to mobilize this stored glycogen could lead to reduced growth in the 

animals. 

Tadpoles collected from SCL 1, an unimpacted site, had higher whole body 

tadpole T3 concentration compared with the other wetlands. This observation may reflect 

the developmental stage of these tadpoles, rather than specific environmental factors, 

such as contaminant exposure. Tadpole age varied from Gosner stages 37-43 among the 

different sites, which could have contributed to the elevated T3 concentration, since T3 

concentrations vary with the developmental stage. As seen in Chapter 2 of this thesis, 

whole body tadpole T3 concentrations were elevated during prometamorphosis (Gosner 

stages 31-40) and highest during metamorphic climax (Gosner stages 40-46). In addition, 

previous studies have reported highest T3 concentrations in amphibians during 

metamorphic climax (Weber et al., 1993). Tadpoles from this site were otherwise 

unremarkable, and the limited data available on water chemistry indicate that water 

quality was similar to other sites.  

Highway Pond, another reference site, had a high condition factor for newly-

metamorphosed frogs, but a low condition factor for tadpoles, as well as low whole body 

tadpole T3 concentrations. As the name suggests, Highway Pond is located near a 

highway (not on Suncor or Syncrude lands), and this proximity may have adversely 

affected the developing tadpoles. In field studies, high abnormality prevalence has been 

correlated with human activities such as urbanization (Taylor et al., 2005T; Vershinin, 

2002). Specimens collected from the Golden Pond had relatively lower body condition 

and whole body tadpole T  concentrations, as well as lower hepatic glycogen levels. 

Water from the Golden Pond showed high conductivity, as well as high levels of 

3
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magnesium, calcium and sulfate ions as compared to the unimpacted sites. This could 

once again be attributed to varying stages of development of the specimens collected and 

not necessarily be due to any one water quality parameter. 

Tadpoles from V Notch Weir (OSPW) exhibited lower body weight, total length 

and condition factor. However, this wetland supported newly-metamorphosed wood frogs 

with relatively high hepatic glycogen concentrations. Both Weir 11 and SCL 13 (OSPW) 

had lower condition factors for wood frog tadpoles and lower concentrations of hepatic 

glycogen in newly-metamorphosed frogs. Waters from V Notch Weir and Weir 11 had 

high ammonia levels when compared with other wetlands, which could have adversely 

affected body condition of wood frogs inhabiting these wetlands. Furthermore, water 

from both Weir 11 and SCL 13 had relatively high pH. Previous work with fish exposed 

to water with high pH has shown inhibition of ammonia excretion and subsequent 

increase in plasma ammonia, which can be potentially lethal (Wilson et al., 1998; Laurent 

et al., 2000). Ammonia is toxic to many aquatic organisms, and occurs in two forms in 

aqueous solution: the un-ionized form (NH3) and the ionized form (NH4
+). An increase in 

NH3 results from increased carbonate hardness, and subsequent increased pH, as NH4
+  

ions are converted to toxic NH3 molecules. At lower pH levels, NH3 converts to NH4
+ 

(Boyer and Grue, 1995).  

Comparison between whole body tadpole triglyceride and thyroid hormone (T3 

and T4, separately) concentrations among the various wetlands yielded no relationships 

between these endpoints. This result, which is different than that observed in Chapter 2, 

could be attributed to the range of developmental stages of tadpoles collected from each 

wetland (Gosner stages 37-43).  
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In the Athabasca oil sands, wood frog eggs, tadpoles and new metamorphs are at 

risk due to predation, dessication (due to evaporation of water from source ponds) or low 

temperatures. Only 4%, 4.4% and 3.3% of wood frog (Rana sylvatica), spotted frog 

(Rana pretiosa) and tiger salamander (Ambystoma tigrinum) eggs, respectively, survive 

to metamorphosis in the field under normal conditions (Venturino et al., 2003). Although 

this mortality is usually assumed to be due to natural environmental stressors, the role of 

contaminants in decreased overall body condition and survivability cannot be overlooked.  

Wetlands that support diverse, sustainable populations of indigenous amphibians 

usually have many of the characteristics of a healthy ecosystem. This study shows that 

amphibians are present in and around many of the water bodies containing oil sands 

process-affected water on Syncrude and Suncor leases. Obviously, the presence of adults 

and evidence of efforts at reproduction (i.e., egg masses and tadpoles) is not sufficient to 

demonstrate that reclaimed wetlands are capable of sustaining viable populations. 

Amphibians are frequently attracted to water bodies that are not conducive to 

reproductive success. Local populations in poor quality habitat that experience 

recruitment failure due to high embryonic or larval mortality can, within limits, be 

sustained by in-migration of adults from surrounding higher quality habitat (Pulliam, 

1988). Therefore, population surveys alone are not adequate to predict habitat suitability 

in a heterogeneous landscape.  

This study reports preliminary findings about wood frog tolerance to a range of 

OSPW and substrates in reclaimed wetlands. The study design does not permit rigorous 

conclusions about the toxicity of OSPW and sediments to native amphibians. Future work 

with exposure of wood frog eggs and tadpoles to OSPW and substrates under laboratory 
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conditions to assess the effects on wood frog development and growth can perhaps help 

ascertain individual contributions of OSPW and substrates to any potential toxicity. 
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 CHAPTER 4 
4.0 Laboratory exposure of wood frog eggs and tadpoles to oil sands process-affected 

waters and substrates 
 

 
4.1 Abstract 

 
The Athabasca oil sands in northern Alberta represent one of the largest known 

oil deposits in the world. The process used to extract oil from these deposits results in the 

production of large volumes of process-affected water (OSPW) and substrates (OSPS). 

These effluents will be incorporated into wetlands as a component of current landscape 

reclamation strategies. Wood frogs (Rana sylvatica) are an abundant native amphibian 

likely to inhabit these reclaimed wetlands. 

The objective of this study was to evaluate potential detrimental effects of OSPW 

and OSPS from existing reclaimed wetlands with different histories and contaminant 

profiles on the growth and development of wood frogs. In 2006, wood frog eggs collected 

from uncontaminated wetlands were exposed to OSPW from five different OSPW-

impacted wetlands or water from one unimpacted wetland (reference) and dechlorinated 

tap water (control) under laboratory conditions. Endpoints evaluated included percent 

hatchability and tadpole survival. Hatchability was reduced in eggs exposed to water 

from one of the OSPW sites (25.7%), compared with the other process-affected ponds 

and the control water (P<0.05). Tadpole survival was significantly affected (<20%) by 

exposure to water from all the OSPW-impacted sites (P<0.05). In 2007, newly hatched 

wood frog tadpoles (Gosner stage 19-21) were exposed to water from six different 

wetlands containing OSPW or a tap water control. Results showed <10% survivability of 

tadpoles in five of the six OSPW sites relative to control animals (P<0.05). 
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A substrate exposure study was also conducted in 2007, in which older wood frog 

tadpoles (Gosner stages 27-30) were exposed to five process-affected substrates or a 

control substrate overlaid with dechlorinated tap water. Endpoints evaluated included 

survivability (to Gosner stage 37-39), body weight, total length, condition factor and 

whole body tadpole thyroid hormone and triglyceride concentrations. The OSPS 

exposure did not affect tadpole survivability, but tadpoles exposed to two of the impacted 

substrates demonstrated significant changes in morphological endpoints and whole body 

triglyceride concentrations (P<0.05). Water chemistry and metals concentrations were 

compared with egg hatchability and tadpole survival, growth and development. 

 
 
4.2 Introduction 
 

Reclamation strategies in the Alberta oil sands include the bioremediation of 

water (OSPW) and sediments (OSPS) produced by the oil sand extraction process. The 

oil sand mining companies (including Syncrude Canada Ltd. and Suncor Energy Inc.) are 

required by provincial environmental legislation to demonstrate that reclaimed wetlands 

containing OSPW and OSPS are capable of sustaining populations of indigenous aquatic 

and semi-aquatic organisms. Wood frogs (Rana sylvatica) are an abundant native 

amphibian representative of these populations.  

Amphibians as a group are important keystone species in many habitats, and can 

be used as models in ecotoxicology studies to evaluate the impact of many environmental 

stressors, including acute and chronic chemical toxicity (Sparling et al., 2000). The 

presence of wood frogs (and other amphibians) has been noted in and around many water 

bodies containing oil sands process-affected materials on Syncrude and Suncor lease 
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lands. However, the presence of egg masses and young larvae at these sites is not 

indicative of habitat capable of sustaining amphibian populations long term, because 

breeding adults can be drawn towards wetlands that are, in actuality, unfavorable for 

reproductive success, and act as population sinks (Pollet and Bendell-Young, 2000).  

The OSPW and OSPS are known to contain elevated levels of dissolved organic 

matter (e.g. naphthenic acids), hydrocarbons, including polycyclic aromatics, various 

metals and salts. The toxicity of reclaimed wetland water and sediments to amphibians 

will likely vary as a function of developmental stage. Unshelled wood frog eggs are 

directly exposed to sediments and water, and may readily absorb toxic substances. 

Amphibian embryos are very sensitive to acidic water (pH 4-5) (Freda, 1986), but 

developing larvae become tolerant of increases in acidity after hatching (Pierce et al., 

1984; Freda & Dunson, 1985). Certain metals such as aluminum can also become toxic to 

developing amphibian larvae in conjunction with low pH. Aluminum sensitivity varies 

according to the developmental stage. Newly hatched tadpoles are extremely sensitive, 

followed by embryos and then older tadpoles. The 96 hour LC50 for Leopard frogs (Rana 

pipiens) exposed to monomeric aluminum was less than 250 µg/L for newly hatched 

tadpoles, 403 µg/L for embryos, and greater than 1000 µg/L for 3-week old tadpoles 

(Freda and McDonald, 1990). Concentrations of sodium, sulfate, chloride and 

bicarbonate ions are often particularly high in OSPW, resulting in high levels of salinity. 

Previous work with amphibian eggs (Haramura, 2007) and larvae (Gomez-Mestre and 

Tejedo, 2004) have shown decreased hatching and rate of development with increased 

salinity. 
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Consequently, although there are indications of amphibian use of reclaimed oil 

sands wetlands, little work has been done to determine the sensitivity of developing 

embryos and larvae to the complex mixtures present in OSPW and OSPS. Controlled, 

laboratory-based studies are needed to assess potential adverse effects on eggs and 

tadpoles. Laboratory-based studies allow control of environmental variables, such as 

unfavourable weather, risk of predation and exposure to infections that may affect 

physiological and biochemical endpoints. In addition, laboratory studies allow 

assessment of any potential toxic affects of oil sands process-affected water (OSPW) and 

substrates (OSPS), independent of each other, to wood frog eggs and tadpoles. 

The objective of this study was to determine the impact of exposure to OSPW and 

OSPS on hatchability, survivability, growth and development of wood frog eggs and 

tadpoles. In tadpoles that survived to metamorphosis, potential adverse effects on whole 

body triglyceride and thyroid hormone (3,5,3’-triiodothyronine [T3] and thyroxine [T4]) 

concentrations were also determined. It was hypothesized that wood frog eggs and 

tadpoles exposed to OSPW or OSPS would demonstrate lower hatchability and 

survivability, and reduced growth and delayed time to metamorphosis than those exposed 

to control water. In addition, wood frog tadpoles exposed to OSPW and OSPS would 

demonstrate reduced whole body triglyceride (TG), T3 and T4 concentrations compared to 

control tadpoles. 
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4.3 Materials and Methods 
 

Water was collected from three different sites each on Suncor and Syncrude oil 

sands leases in 2006 (Table 4.1), beginning as soon as the wetlands were ice free in the 

spring. One of the Suncor wetlands (Loon Lake) is considered to be an on site reference 

wetland, with no process-affected materials. In 2007, water was collected from six 

different OSPW-impacted wetlands on Syncrude lease lands in the spring, once the 

weather conditions were favourable (Table 4.2). Dechlorinated aged tap water was used 

as control water during both years. A sediment toxicity study was also carried out in 2007 

to evaluate five different types of substrates (OSPS) relevant to the oil sands reclamation 

efforts. Clean silica sand was used as the control sediment (Table 4.3). Water and 

substrates were shipped in 20L containers to the Toxicology Centre at the University of 

Saskatchewan in Saskatoon. 

All OSPS were obtained from Syncrude Canada Ltd. Consolidated tailings (CT) 

are produced when gypsum (CaSO4●2H2O) is added to fine tailings, in order to expedite 

the process of settling.  The CT in tailing ponds settles much more rapidly than fine 

tailings (FTFC, 1995). Saline-sodic overburden is characterized by properties such as a 

pH of ≤ 8.5 and a high concentration of salts. Peat mineral mix consists of salvaged 

mineral soil materials, tailings sand and surface organic materials. A peat mineral mix is 

generally abundant in mining areas and is used as a surface treatment (Fung and Macyk, 

2000). Coke, generally a blackish-grey, porous solid, is a waste product produced during 

heavy oil upgrading processes at Syncrude Canada Ltd. Clean silica sand (425-850 µm) 

was used as a control sediment (Unimin Corporation, Connecticut, USA). 
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4.3.1 Water sources for 2006 
 
Table 4.1: Summary of water sources from the Athabasca oil sands, Alberta, used for the 
laboratory exposure of wood frog (Rana sylvatica) eggs and tadpoles in 2006. Five of the 
sources represented oil sands process-affected waters (OSPW), with one on-site reference 
water source and tap water acting as control. 
 
          

Company Site Treatment 

Suncor Loon Lake Reference 

Suncor Natural Wetland OSPW 

Suncor Jan’s Pond OSPW 

Syncrude Peat Pond OSPW 

Syncrude Beaver Creek OSPW 

Syncrude Test Pond 7 OSPW 

 Dechlorinated aged  
tap water Control 

 
 
4.3.2 Water sources for 2007 
 
Table 4.2: Summary of water sources from the Athabasca oil sands, Alberta, used for the 
laboratory exposure of wood frog (Rana sylvatica) tadpoles in 2007. Six of the sources 
represented oil sands process-affected waters (OSPW), with tap water acting as a control. 
 
                  

Company Site Treatment 

Syncrude Peat Pond OSPW 

Syncrude Test Pond 9 OSPW 

Syncrude Test Pond 5 OSPW 

Syncrude Mike’s Pond OSPW 

Syncrude Bill’s Lake OSPW 

Syncrude Demonstration (Demo) 
Pond OSPW 

 Dechlorinated aged  
tap water Control 
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4.3.3 Substrate types tested in 2007 
 
Table 4.3: Summary of substrate sources (OSPS) from the Athabasca oil sands, Alberta, 
used for the laboratory exposure of wood frog (Rana sylvatica) tadpoles in 2007, with 
clean silica sand acting as a control. 
 
 

Company Substrate Type Treatment 

Syncrude Consolidated tailing OSPS 

Syncrude Plain tailings sand OSPS 

Syncrude Saline sodic overburden OSPS 

Syncrude Peat mineral mixture OSPS 

Syncrude Coke OSPS 

Unimin Corporation Clean silica sand Control 
 
 
 
4.3.4 Collection of egg masses 
 

Amplexed pairs of wood frogs and newly fertilized egg masses were collected 

from several different wetlands near Saskatoon, Saskatchewan in April 2006. Only newly 

laid wood frog egg masses were collected in April 2007 (Figure 4.1). Breeding sites were 

located  using frog calling surveys. 

 

        
 

       (a)     (b) 
 
Figure 4.1: (a) Collection of wood frog egg masses from local Saskatchewan water 
bodies; (b) amplexed pair of wood frogs 
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Amplexed pairs and egg masses were transported to the laboratory at the 

Toxicology Centre, University of Saskatchewan, and put in a controlled environmental 

chamber at 10ºC. Eggs from several different sources were mixed prior to being allocated 

to the specific treatments to minimize genetic variability among treatments.  

 

4.3.5 Tadpole husbandry and monitoring 
 

Procedures for tadpole husbandry were based on Amphibians: Guidelines for 

breeding, care and management of laboratory animals (National Research Council, 1974). 

Containers with eggs and tadpoles were continuously aerated using an air stone and 

aquarium pumps. Containers were exposed to 16 hours of full spectrum light and eight 

hours of darkness per day. The temperature of the environmental chamber was increased 

gradually from 10ºC to 22ºC over the course of development, to match the water 

temperature in the source ponds. Once the tadpoles started feeding, their diet consisted of 

boiled green lettuce and ground Tetramin® tropical fish flakes. One half of water 

volume, as well as residual food was replaced every second day.  

 
 
4.3.6 Experimental design for oil sands process-affected water exposure (2006 and 

2007) 
 

For the OSPW exposure study in 2006, pooled, newly fertilized eggs were 

randomly allocated to specific treatments by placing 30 eggs each in an 11.7x20.8x34.0 

cm plastic container with two L of OSPW, site-specific control water or dechlorinated 

tap-water. There were ten replicates for each treatment (total of 300 eggs/treatment) 

(Figure 4.2). Percent hatchability and percent survivability of wood frog eggs and 

tadpoles were monitored daily through Gosner stages 26-27.  
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Wood frog eggs collected from  

Dechlorinated 
Tap Water Loon Lake 

(30 eggs x  (30 eggs x  
10 replicates) 10 replicates)

 
 
Figure 4.2: Experimental design for exposure of wood frog (Rana sylvatica) eggs and 
tadpoles in 2006 to dechlorinated tap water (control), reference water and oil sands 
process-affected water (OSPW) from five different reclaimed wetlands in the Athabasca 
oil sands, Alberta. 
 
 
 

In 2007, newly fertilized wood frog eggs were collected from several water 

bodies around Saskatoon and transported to the laboratory as before. After hatching, 

fifteen newly hatched tadpoles from different egg masses (Gosner stages 19-21) were 

randomly allocated to the various treatments and placed in a 11.7x20.8x34.0 cm plastic 

container with one cm of clean silica sand substrate (Unimin Corporation, Connecticut, 

USA), overlaid with two L of OSPW or dechlorinated tap-water. There were 10 

replicates for each treatment (total of 150 tadpoles/treatment) (Figure 4.3). Percent 

survivability of wood frog tadpoles was monitored daily through Gosner stages 26-27. 

                              

Natural Wetland 
(30 eggs x 

10 replicates) Jan’s Pond 
(30 eggs x  

10 replicates)

Peat Pond 
(30 eggs x 

10 replicates)

Test Pond 7 
(30 eggs x  

unaffected sites 

Beaver Creek 10 replicates)
(30 eggs x  

10 replicates)
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Newly hatched wood frog tadpoles  

Dechlorinated 
Tap Water Peat Pond 

(15 tadpoles x 
10 replicates) 

(15 tadpoles x 
10 replicates)

 
 
Figure 4.3: Experimental design for exposure of newly-hatched wood frog (Rana 
sylvatica) tadpoles in 2007 to dechlorinated tap water (control) and oil sands process-
affected water (OSPW) from six different reclaimed wetlands in the Athabasca oil sands, 
Alberta. 
 
 
 
4.3.7 Experimental design for oil sands process-affected substrate exposure (2007) 
 

In 2007, wood frog tadpoles hatched from eggs collected from unaffected sites 

near Saskatoon were exposed to oil sands process-affected substrates or clean silica sand 

as control. Six tadpoles at Gosner stages 27-30 were randomly allocated to OSPS 

treatments, and placed in a 11.7x20.8x34.0 cm plastic container with two cm of substrate 

overlaid with two L of dechlorinated tap water. There were 10 replicates per treatment 

(total of 60 tadpoles/treatment) (Figure 4.4). The OSPS exposure experiment was not 

initiated with newly hatched tadpoles similar to OSPW studies because the substrate 

materials to be tested were not shipped to the University of Saskatchewan at the 

appropriate time. 

                                              

Test Pond 9 
(15 tadpoles x 
10 replicates) Test Pond 5 

(15 tadpoles x 
10 replicates)

Mike’s Pond 
(15 tadpoles x 
10 replicates)

Demo Pond 
(15 tadpoles x 

(Gosner stages 19-21) 

Bill’s Lake 10 replicates)
(15 tadpoles x 
10 replicates) 
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Consolidated Tailing Clean Silica Sand 
(6 tadpoles x  (6 tadpoles x 
10 replicates) 10 replicates)

Plain Tailings Sand Coke 

Wood frog tadpoles at Gosner stages 27-30 
(hind limb bud emergence) 

Saline Sodic 
Overburden 

Peat Mineral (6 tadpoles x (6 tadpoles x 
10 replicates) Mixture 10 replicates)

(6 tadpoles x (6 tadpoles x 
10 replicates) 10 replicates)

 
 
Figure 4.4: Experimental design for exposure of wood frog (Rana sylvatica) tadpoles (at 
hind limb development) in 2007 to clean silica sand (control) and oil sands process-
affected substrates from five different sources in the Athabasca oil sands, Alberta. 
 
 
 
4.3.7.1 Biological Assays 
 

A modified method from Weber et al. 2003 and Brasfield et al. 2004 was applied 

to wood frog tadpoles to evaluate whole body tadpole triglyceride and T3 and T4 

concentrations.   

4.3.7.1.1 Thyroid hormone assays 
 

Commercial enzyme-linked immunosorbent assay (ELISA) kits (BioQuant, San 

Diego, CA, USA) were used to measure whole-body tadpole T3 and T4 concentrations in 

wood frog tadpoles as described in section 2.3.1.3.1 of Chapter 2. 

 

4.3.7.1.2 Triglyceride assays 
 

The triglyceride assay was based on a method developed in juvenile fish by 

Weber et al. (2003). As described in section 2.3.1.2.1 of Chapter 2, tadpole whole body 
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triglyceride concentrations were measured using a modification of a commercial kit 

protocol (Sigma, Saint Louis, MO, USA). 

 
 
4.3.8 Water and substrate chemistry testing 
 

Water samples were analyzed for basic water quality variables (conductivity, pH, 

hardness, alkalinity, ammonia and dissolved oxygen), and OSPW and OSPS were also 

assayed for metal concentrations. Metal analysis was conducted by filtering water 

samples at 0.45µm, and acidifying them with 12.5µL of 2% nitric acid (69% Omni-Trace, 

Merck, NJ, USA) per one ml of sample. Each substrate sample (0.1g) was microwave 

digested using nitric acid, hydrogen peroxide and hydrogen fluoride. Samples were 

subsequently analyzed with a Thermo X Series inductively coupled plasma mass 

spectrometer (ICP-MS) (Thermo Electron Corporation, MA, USA). 

 
 
4.3.9 Statistical analyses 
 

Statistical analyses included parametric and non-parametric Kruskal-Wallis one-

way ANOVA followed by post hoc tests (Tukey’s and Dunn’s) for multiple comparisons. 

Specifically, weight measurements were analyzed by parametric ANOVA with Tukey’s 

post-hoc test, whereas the length and condition factor measures were evaluated using 

non-parametric Kruskal-Wallis ANOVA, followed by Dunn’s post-hoc test. Since 

animals were not exposed to treatment solutions individually, the potential tank effect 

was tested for all variables using one way ANOVA, but was always found to be not 

significant. Pearson product moment correlations were used to evaluate the relationship 

between triglyceride and T3 and T4 concentrations. The correlation coefficient (r) was 

given at p < 0.05 for all correlations. The results are expressed as mean ± SEM. 
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Intra-assay variability was assessed for each of the three tests (T3, T4 and 

triglycerides), by making six determinations of a pooled sample. The same pooled sample 

was measured six more times on separate occasions to evaluate inter-assay variability.  

 
 

4.4 Results 
 

4.4.1 Hatchability and survival of wood frog tadpoles exposed to oil sands process-
affected water in 2006 and 2007 

 
Figure 4.5 illustrates the percent hatchability of wood frog eggs exposed to 

dechlorinated aged tap water (control) and several water sources from the Athabasca oil 

sands. Percent hatchability was significantly lower in eggs exposed to water from Jan’s 

Pond, an OSPW site, compared to the reference source, Loon Lake, and dechlorinated tap 

water control (P<0.05). Jan’s Pond hatchability was also significantly lower than OSPW-

impacted Beaver Creek and Peat Pond results (P<0.05). With the exception of Jan’s 

Pond, there were no significant differences in hatchability between other OSPW sites and 

the unimpacted sources. 

Figure 4.6 (graph A) shows percent survivability of wood frog tadpoles exposed 

to control, reference and process-affected waters over a period of 28 days after hatching 

in 2006. Survivability of tadpoles from one OSPW site (Jan’s Pond) and the on-site 

reference source (Loon Lake) dropped dramatically within 1-2 weeks of hatching. 

Tadpoles exposed to OSPW from Jan’s Pond succumbed faster than all other treatments 

except Loon Lake. Relative to the other water treatments, tadpoles in dechlorinated aged 

tap water had significantly higher survivability over the course of the observation period 

(P<0.05). Survivability of tadpoles exposed to OSPW sources Test Pond 7 and Peat Pond 

also showed significantly higher survivability than Jan’s Pond and Loon Lake (P<0.05). 
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Figure 4.6 (graph B) illustrates percent survivability of wood frog tadpoles following 

exposure to OSPW from six impacted sites over a period of 21 days in 2007. Tadpole 

survival in all the water treatments declined over time. However, survival decreased most 

rapidly in tadpoles exposed to OSPW sources, Peat Pond and Demo Pond. In contrast, 

survivability of tadpoles in dechlorinated aged tap water remained high throughout the 

exposure period (P<0.05).  

Figure 4.7 (graph A) summarizes survivability of the tadpoles after 28 days of 

exposure in 2006. Survivability was zero among tadpoles exposed to water from Loon 

Lake (reference), Natural Wetland (OSPW), Jan’s Pond (OSPW) and Beaver Creek 

(OSPW). The dechlorinated aged tap water control had the highest percent survivability 

among the remaining treatments (P<0.05). Figure 4.7 (graph B) summarizes survivability 

of wood frog tadpoles exposed to OSPW or tap water after 21 days in 2007. Tadpole 

survivability was significantly higher in aged tap water control (P<0.05) than that of the 

tadpoles in all of the OSPW treatments with the exception of Bill’s Lake. Tadpole 

survivability in Bill’s Lake water was also significantly greater than in the other OSPW 

sources (P<0.05).  
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Figure 4.5: Percent hatchability of wood frog (Rana sylvatica) eggs exposed to 
dechlorinated tap water (control), on-site reference, and five different oil sands process-
affected water sources (OSPW) from the Athabasca oil sands, Alberta, in 2006. Data 
shown are mean ± standard error of the mean. n=300 eggs per water source. Data were 
analyzed using non-parametric Kruskal-Wallis ANOVA on ranks followed by Tukey’s 
post-hoc test. Values marked with different letters were significantly different from each 
other (P<0.05). 
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Figure 4.6: Percent survivability of wood frog (Rana sylvatica) tadpoles exposed to 
dechlorinated tap water (control), on-site reference and oil sands process-affected water 
sources (OSPW) from the Athabasca oil sands, Alberta, in 2006 (A) and 2007 (B). Data 
shown are mean ± standard error of the mean. n=173-261 tadpoles for 2006 and 150 
tadpoles for 2007, per water source. Data were analyzed using non-parametric Kruskal-
Wallis ANOVA on ranks followed by Tukey’s post-hoc test. Values marked with 
different letters were significantly different from each other (P<0.05). 
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4.4.1.1 Water Chemistry for oil sands process-affected water, reference and control 
water (2006 and 2007) 

 
Results of basic water chemistry and metals analyses of sources used in the 

OSPW study in 2006 showed particularly high conductivity and total water hardness for 

Jan’s Pond among all the treatments. Water from Natural Wetland had high pH, alkalinity 

and high dissolved oxygen content, whereas Loon Lake water, a reference source, had the 

highest ammonia level compared to the rest of the water sources (Table 4.4). 

Concentrations of boron, strontium, uranium, lead, nickel, cobalt, chromium and 

vanadium were elevated in Jan’s Pond water. High concentrations of molybdenum were 

observed in Natural Wetland, while Beaver creek had elevated manganese and zinc, and 

Loon Lake had a high barium concentration. Test pond 7 had highest aluminum and iron 

concentrations among the OSPW sources (Table 4.5). 

Results of water chemistry and metals analyses of the water sources used in the 

OSPW study in 2007 showed the highest pH, alkalinity and dissolved oxygen content in 

water from Demo Pond; the highest conductivity and ammonia in Mike’s pond; and 

elevated hardness in dechlorinated tap water control (Table 4.6). Elevated concentrations 

of boron, strontium, molybdenum and uranium were observed in Mike’s Pond, compared 

to other water sources. Test Pond 9 had highest concentrations of aluminum, vanadium, 

chromium, nickel and arsenic, whereas, dechlorinated tap water had relatively higher 

levels of zinc and lead (Table 4.7). 
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Table 4.4: Summary of water quality measurements for oil sands process-affected 
(OSPW), reference and control water used for laboratory exposure of wood frog (Rana 
sylvatica) eggs and tadpoles in 2006. 
 

Water Source Conductivity 
(µs/cm) pH Hardness 

(mgCaCO3/L)
Alkalinity

(mg/L) 
Ammonia 

(mg/L) 

Dissolved 
Oxygen 
(mg/L) 

Loon Lake 
(Reference) 853 ± 3.0 7.95 ± 

0.03 307 ± 1.5 164 ± 1.5 1.72 ±  
0.19 9.27 ± 0.33

Natural 
Wetland 
(OSPW) 

754 ± 2.0 8.70 ± 
0.02 78.7 ± 0.7 294 ± 1.0 1.50 ±  

0.42 10.0 ± 0.10

Peat Pond 
(OSPW) 974 ± 2.5 7.93 ± 

0.19 289 ± 3.5 17.0 ± 2.1 0.176 ± 
0.02 7.95 ± 0.02

Test Pond 7 
(OSPW) 194 ± 3.5 7.84 ± 

0.22 17.0 ± 2.2 7.00 ± 0.7 0.809 ± 
0.04 6.29 ± 0.31

Jan’s Pond 
(OSPW) 2511 ± 6.0 8.58 ± 

0.01 522 ± 2.0 56.7 ± 1.3 0.716 ± 
0.04 5.17 ± 0.70

Beaver Creek 
(OSPW) 1330 ± 3.5 7.93 ± 

0.24 369 ± 3.5 24.3 ± 1.2 0.700 ± 
0.03 8.13 ± 0.04

Dechlorinated 
Tap Water 
(Control) 

400 ± 5.5 8.30 ± 
0.25 138.7 ± 1.6 6.00 ± 0.7 0.263 ± 

0.05 7.02 ± 0.05

 
 



 
 

Table 4.5: Metal analysis for water sources from impacted (oil sands process-affected water) and reference wetlands in the Athabasca 
oil sands, Alberta, that were used for laboratory exposure of wood frog (Rana sylvatica) eggs and tadpoles in 2006. 
 

Element 
(µg/L) 

Canadian 
Water 

Quality 
Guidelines** 

Loon Lake 
(Reference) 

Jan’s Pond 
(OSPW) 

Natural 
Wetland 
(OSPW) 

Peat Pond 
(OSPW)  

Test Pond 7 
(OSPW) 

Beaver Creek 
(OSPW) 

Boron 1200 128      1808 1539 73.2 1120 61.7
Aluminum 1010 9.42      

      
        

      

      
      
      
      
      
      
      

      
      
      

      
      
      

9.72 18.2 9.39 52.7 5.69
Titanium NA* 0.413 0.464 0.879 0.400 1.70 0.00
Vanadium 100 0.283 0.904 0.632 0.279 0.299 0.253

Chromium 8.90 0.187 0.575 0.182 0.176 0.251 0.264

Manganese 0.600 1.04 0.874 1.02 23.5 22.6 690
Iron NA 5.85 66.8 97.1 2019 4049 677

Cobalt 0.900 0.014 0.440 0.343 0.042 0.050 0.100
Nickel NA 0.815 6.63 2.25 0.528 0.872 1.84
Copper 2.00 0.344 0.614 0.711 0.472 0.792 0.363

Zinc 55.0 12.9 11.9 13.4 80.9 52.2 525
Arsenic 5.00 0.361 1.11 2.51 0.540 1.25 1.089

Strontium NA 273 1262 369 382 255 189
Molybdenum 73.0 1.32 35.5 93.6 1.13 1.58 1.06

Antimony NA 0.619 0.749 0.736 0.866 0.654 0.827
Barium NA 111 36.5 51.8 18.7 32.2 48.9
Lead 35.0 0.085 1.39 0.165 0.114 0.507 0.104

Uranium 200 0.993 1.91 1.46 0.557 0.382 0.132
*NA = Not available  **Canadian Water Quality Guidelines for the Protection of Aquatic Life 
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Table 4.6: Summary of water quality measurements for oil sands process-affected 
(OSPW) and control water used for laboratory exposure of wood frog (Rana sylvatica) 
tadpoles in 2007. 
 

Water Source Conductivity 
(µs/cm) pH Hardness 

(mgCaCO3/L)
Alkalinity

(mg/L) 
Ammonia 

(mg/L) 

Dissolved 
Oxygen 
(mg/L) 

Test Pond 5 
(OSPW) 1014 ± 4.5 7.82 ± 

0.14 13.0 ± 1.1 90.0 ± 0.9 0.039 ± 
0.001 10.0 ± 0.14

Test Pond 9 
(OSPW) 1447 ± 4.0 8.72 ± 

0.01 6.00 ± 0.1 306 ± 0.9 0.009 ± 
0.001 10.1 ± 0.07

Mike’s Pond 
(OSPW) 3577 ± 21.5 8.32 ± 

0.02 14.0 ± 0.4 152 ± 1.5 0.186 ± 
0.007 10.5 ± 0.15

Peat Pond 
(OSPW) 1320 ± 3.5 7.99 ± 

0.25 31.0 ± 2.1 202 ± 4.0 0.101 ± 
0.010 10.4 ± 0.28

Demo Pond 
(OSPW) 1882 ± 6.0 8.90 ± 

0.04 10.0 ± 0.3 414 ± 2.5 0.004 ± 
0.002 10.9 ± 0.30

Bill’s Pond 
(OSPW) 560 ± 2.0 7.63 ± 

0.02 13.0 ± 0.7 116 ± 3.0 0.032 ± 
0.009 10.1 ± 0.25

Dechlorinated 
Tap Water 
(Control) 

513 ± 2.0 7.40 ± 
0.035 136 ± 2.0 88.3 ± 1.9 0.102 ± 

0.021 6.60 ± 0.26

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table 4.7: Metal analysis for water sources from impacted (oil sands process-affected water) wetlands in the Athabasca oil sands, 
Alberta, and control water that were used for laboratory exposure of wood frog (Rana sylvatica) tadpoles in 2007. 
 

Element 
(µg/L) 

Canadian 
Water 
Quality 

Guidelines** 

Bill’s Lake 
(OSPW) 

Peat Pond 
(OSPW) 

Demo Pond 
(OSPW) 

Mike’s 
Pond 

(OSPW) 

Test Pond 
5 (OSPW) 

Test Pond 9 
(OSPW) 

Dechlorinated 
Tap Water 
(Control) 

Boron 1200 88.2       80.2 1082 1744 470 972 85.1
Aluminum 1010 6.12       

       
         

       
       
       
       
       

         
       
       
       
       
       
       
       
       

         

7.94 45.2 29.9 15.5 136 8.02
Titanium NA* 0.567 0.280 1.18 0.456 0.788 3.99 0.399
Vanadium 100 0.326 0.848 1.40 0.559 0.540 1.86 0.852
Chromium 8.90 0.143 0.198 0.130 0.158 0.202 0.262 0.146
Manganese 0.600 3.41 2.47 0.564 0.392 0.536 1.63 2.87

Iron NA 126 10.0 10.7 11.9 12.5 76.8 6.71
Cobalt 0.900 0.108 0.108 0.114 0.027 0.022 0.099 0.113
Nickel NA 1.60 0.767 1.72 1.27 0.722 1.83 0.563
Copper 2.00 2.55 0.497 0.635 0.714 0.772 1.02 1.38

Zinc 55.0 7.71 3.35 5.79 2.74 5.05 4.07 13.5
Arsenic 5.00 1.25 1.15 3.01 0.530 1.28 3.76 0.335

Strontium NA 245 418 223 433 213 95.8 195
Molybdenum 73.0 0.763 0.292 1.64 32.8 1.14 2.84 0.990

Antimony NA 0.682 0.643 0.685 0.692 0.718 0.669 0.700
Barium NA 50.8 40.9 34.3 26.9 14.4 22.9 35.6

Thallium 170 0.002 0.002 0.002 0.004 0.003 0.003 0.003
Lead 35.0 0.593 0.549 0.227 0.239 0.219 0.738 1.45

Uranium 200 0.199 1.00 2.28 4.06 0.566 2.04 0.015
*NA = Not available  **Canadian Water Quality Guidelines for the Protection of Aquatic Life 
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4.4.2 Oil sands process-affected substrate exposure study (2007) 
 
4.4.2.1 Survivability and time to metamorphosis 
 

Survivability was determined for wood frog tadpoles exposed to five different oil 

sands substrates compared with clean silica control (Figure 4.8). Tadpoles were exposed 

for 30 days, from Gosner stage 27-30 to Gosner stage 37-39 (pre-metamorphic climax). 

Although mean survival was not significantly different among the treatments (P=0.794), 

it ranged from 65% in tadpoles exposed to consolidated tailings to 41.7% in tadpoles 

exposed to coke.  

Wood frog tadpoles exposed to most OSPS and the silica control reached 

metamorphic climax roughly around the same time (within 30-33 days). Tadpoles 

exposed to coke sediment took somewhat longer to reach metamorphic climax 

(approximately 38 days). Tadpoles exposed to the coke treatment were also smaller in 

size than those in the other treatment groups.  

 

4.4.2.2 Morphometric endpoints (weight, length and condition factor) 
 

Table 4.8 summarizes the morphometric measurements (weight, total length and 

condition factor) obtained for wood frog tadpoles exposed to the OSPS and clean silica 

sand (control). Tadpoles exposed to saline sodic overburden had significantly lower mean 

body weight, whereas tadpoles maturing in consolidated tailings and coke treatments had 

significantly lower body weights and total length (P<0.05). Tadpoles exposed to peat 

mineral mixture, on the other hand, had the highest mean body weight and length 

measurements. The condition factor calculated for tadpoles exposed to saline sodic 

overburden was significantly lower than the tadpoles exposed to other substrates. Sample 
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sizes for the tadpoles collected for morphometric measurements were less than those that 

survived due to difficulties in collecting the animals from their substrate treatments. The 

tadpoles were often hidden within the substrate, which made them difficult to scoop up 

and collect from the substrates. 
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Table 4.8: Morphometric (weight, total length, condition factor) measurements determined for wood frog (Rana sylvatica) tadpoles 
exposed to several oil sands process-affected substrates (OSPS) collected from the Athabasca oil sands in Alberta in summer 2007. 
Data shown are mean ± standard error of the mean. Values marked with different letters were significantly different from each other 
(P<0.05). Condition factor = (weight/total length3)*100. 

 
Clean Silica 

Sand 
(control) 

Consolidated 
Tailings 
(OSPS) 

Plain 
Tailings 
(OSPS) 

Saline Sodic 
Overburden 

(OSPS) 

Peat 
Mineral 
Mixture 
(OSPS) 

Coke 
(OSPS) 

Sample Size 23      28 20 20 17 12

Weight (g) 1.43 ± 0.05a 1.24 ± 0.04b 1.47 ± 0.06a 1.23 ± 0.05b 1.49 ± 0.04a 0.86 ± 0.08b

Total 
Length (cm) 4.70 ± 0.07a 4.33 ± 0.08b 4.74 ± 0.08a 4.70 ± 0.09a 4.89 ± 0.07a 4.03 ± 0.12b

Condition 
Factor 1.39 ± 0.05a 1.57 ± 0.08a 1.39 ± 0.05a 1.23 ± 0.10b 1.30 ± 0.07a,b 1.29 ± 0.06a,b
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4.4.2.3 Whole body tadpole triglyceride and thyroid hormone analyses for wood frog 
tadpoles exposed to oil sands process-affected substrates in 2007 

 
Whole body T3 concentrations were measured in wood frog tadpoles exposed to 

OSPS or silica control (Figure 4.9, graph A). Whole body T3 concentrations in tadpoles 

exposed to saline sodic overburden were significantly lower than tadpoles exposed to 

plain tailings (P<0.05). However, there were no significant differences in mean T3 

concentrations of tadpoles exposed to OSPS compared to silica control, or among any 

other treatments. Whole body T4 concentrations were also assessed in tadpoles exposed to 

OSPS or silica control (Figure 4.9, graph B). None of the treatments were significantly 

different (P=0.062), although tadpoles exposed to silica sand (control) had the highest 

mean T4 concentration, with the lowest concentration observed in tadpoles exposed to 

coke (OSPS). 

In addition to whole body T3 and T4 concentrations, whole body T3/T4 ratio was 

also determined in the wood frog tadpoles exposed to OSPS (Figure 4.10). There was no 

significant difference among tadpoles exposed to the various substrates (P=0.072). 

Highest T3/T4 ratio was observed in tadpoles exposed to plain tailings sand, while the 

lowest T3/T4 ratio was observed in saline sodic overburden tadpoles. 

Whole body triglyceride concentrations measured in wood frog tadpoles exposed to 

OSPS were not different than results of the control treatment. However, significantly 

lower whole body triglyceride concentrations were observed in tadpoles exposed to saline 

sodic overburden and coke OSPS treatments, compared to plain tailings sand, another 

OSPS treatment (P<0.05).  
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Figure 4.9: Whole body tadpole 3,5,3’-triiodothyronine (T3) (A) and thyroxine (T4) (B) 
concentrations (ng/g tadpole tissue) in wood frog (Rana sylvatica) tadpoles at pre-
metamorphic climax (Gosner stages 37-39), exposed to clean silica sand (control) and oil 
sands process-affected substrates (OSPS) from five different sources in the Athabasca oil 
sands, Alberta, in 2007. Data shown are mean ± standard error of the mean. n=9-23 
tadpoles per substrate treatment. Data were analyzed using parametric ANOVA followed 
by Tukey’s post-hoc test. Values marked with different letters were significantly different 
from each other (P<0.05). No significant differences in whole body tadpole T4 hormone 
concentrations were observed (P=0.062). 
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Figure 4.10: Whole body tadpole 3,5,3’-triiodothyronine (T3):thyroxine (T4) ratio in 
wood frog (Rana sylvatica) tadpoles at pre-metamorphic climax (Gosner stages 37-39), 
exposed to clean silica sand (control) and oil sands process-affected substrates (OSPS) 
from five different sources in the Athabasca oil sands, Alberta, in 2007. Data shown are 
mean ± standard error of the mean. n=9-23 tadpoles per substrate treatment. Data were 
analyzed using non-parametric Kruskal-Wallis ANOVA on ranks. No difference was 
observed among treatments (P=0.072). 
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Figure 4.11: Whole body tadpole triglyceride concentrations (mg/g tadpole tissue) in 
wood frog (Rana sylvatica) tadpoles at pre-metamorphic climax (Gosner stages 37-39), 
exposed to clean silica sand (control) and oil sands process-affected substrates (OSPS) 
from five different sources in the Athabasca oil sands, Alberta, in 2007. Data shown are 
mean ± standard error of the mean. n=12-27 tadpoles per substrate treatment. Data were 
analyzed using non-parametric Kruskal-Wallis ANOVA on ranks followed by Dunn’s 
post-hoc test. Values marked with different letters were significantly different from each 
other (P<0.05). 
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4.4.2.4 Water and substrate chemical analyses (2007) 
 

Chemical analyses of water overlaid on the OSPS substrates and the substrates 

themselves are illustrated in Tables 4.9 and 4.10, respectively. Water overlaid on the coke 

substrate contained high concentrations of vanadium and copper. Samples of coke OSPS 

were high in vanadium, nickel, molybdenum and mercury, compared to the other 

substrates. Water overlaid on consolidated tailing had high concentrations of tin and 

barium. Substrate chemical analysis showed high concentration of manganese in the 

consolidated tailing. Metal analysis of water overlaid on saline sodic substrate showed 

elevated concentrations of boron, nickel, zinc, strontium, molybdenum, cadmium, 

antimony, thallium and uranium. Substrate chemical analysis of saline sodic overburden 

revealed the highest concentrations of most of the metals among all the OSPS treatments, 

including aluminum, iron, copper, zinc, strontium, cadmium, tin, antimony and lead. 

Metals concentrations in clean silica sand (control) were mostly below the detection limit. 



Table 4.9: Metal analysis of water overlaid on five different oil sands process-affected substrates (OSPS) from the Athabasca oil 
sands, Alberta, and clean silica sand (control) used for laboratory exposure of wood frog (Rana sylvatica) tadpoles in 2007. 
 

Element (µg/L) 

Canadian 
Water 
Quality 

Guidelines** 

Coke 
(OSPS) 

Consolidated 
Tailings 
(OSPS) 

Peat Mineral 
Mix (OSPS) 

Plain  
Tailings Sand 

(OSPS) 

Saline Sodic 
Overburden 

(OSPS) 

Clean Silica 
Sand 

(Control) 

Boron        1200 69.3 415 80.2 109 1077 82.8
Aluminum        

        
        
        
        

        
        
        
        

        
        
        

        
        

        
        

        
        

        
        

1010 56.2 49.1 129 29.5 10.4 7.26
Titanium NA* 1.08 2.32 4.85 1.05 0.309 0.392
Vanadium 100 25.7 0.713 0.516 0.611 1.21 1.06
Chromium 8.90 0.236 0.162 0.313 0.233 0.111 0.177
Manganese 0.600 18.0 27.9 385 2.95 1.94 1.86

Iron NA 29.8 32.4 128 41.5 10.6 8.35
Cobalt 0.900 0.185 0.195 0.367 0.077 0.288 0.055
Nickel NA 4.13 1.42 1.01 1.14 6.73 1.09
Copper 2.00 2.31 0.677 0.498 0.675 0.993 2.19

Zinc 55.0 2.43 2.42 2.85 3.48 9.71 6.66
Arsenic 5.00 0.342 0.148 1.25 0.234 0.683 0.427

Strontium NA 202 316 191 219 2461 215
Molybdenum 73.0 1.70 1.51 1.96 1.40 3.09 1.89

Cadmium 0.017 <LoD* <LoD 0.033 0.038 0.058 0.044
Tin NA 0.110 0.328 0.101 0.160 0.224 0.217

Antimony NA 0.751 0.699 0.676 0.755 1.17 0.770
Barium NA 16.9 50.0 44.6 38.1 20.6 37.7

Thallium 170 0.002 0.006 0.002 0.009 0.028 0.008
Lead 35.0 0.165 0.430 0.248 0.248 0.232 0.432

Uranium 200 0.069 0.636 2.52 0.205 3.55 0.231
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<LOD – Below the limit of detection  **Canadian Water Quality Guidelines for the Protection of Aquatic Life  
*NA – Not available 

 
 



Element 
(mg/kg) 

Coke  
(OSPS) 

Consolidated 
Tailings (OSPS) 

Peat Mineral 
Mix (OSPS) 

Plain Tailings 
Sand (OSPS) 

Saline Sodic 
Overburden 

(OSPS) 

Clean Silica 
Sand (OSPS) 

Aluminum       4292 37736 32510 6342 51756 155
Titanium       

       
       
       

      
       
        

       
       

       
       

       
       
       

       
       

999 3435 2554 588 3477 34.7
Vanadium 1225 59.6 64.7 6.13 141 0.38
Chromium 13.7 49.7 40.5 3.12 70.8 < LoD*
Manganese 84.4 269 195 18.8 182 3.02

Iron 2769 9179 14697 1128 25620 89.9
Cobalt 8.56 11.3 6.17 1.23 13.8 0.06
Nickel 516 20.4 15.2 1.93 33.0 < LoD
Copper 14.1 6.13 6.93 < LoD 27.3 < LoD 

Zinc 17.5 28.8 17.6 1.84 85.5 7.33
Strontium 56.8 67.8 120 26.7 189 3.06

Molybdenum 79.3 0.83 < LoD < LoD 1.20 < LoD 
Silver 0.068 0.049 0.043 0.022 0.148 < LoD

Cadmium < LoD 0.140 0.110 0.030 0.160 0.03
Tin 0.74 0.920 0.450 < LoD 0.940 < LoD 

Antimony 0.269 0.401 0.425 0.047 1.03 < LoD
Barium 45.1 295 288 184 499 9.12

Thallium 0.054 0.338 0.321 0.089 0.503 0.003
Lead 7.79 14.6 10.7 3.58 15.6 0.430

Uranium 0.920 1.74 3.51 0.320 2.72 0.290

 
 

 
Table 4.10: Chemical analysis of five different oil sands process-affected substrates (OSPS) from the Athabasca oil sands, Alberta, 
and clean silica sand (control) used for laboratory exposure of wood frog (Rana sylvatica) tadpoles in 2007. 

 
* <LOD – Below the limit of detection
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4.5 Discussion 

Early life stages of amphibians are generally more vulnerable to environmental 

stressors than adults (Ortiz-Santaliestra et al., 2006). Adverse effects of stressors such as 

environmental contaminants include lower survival and growth rates, as well as 

alterations in physiological endpoints that may impact fitness, such as endocrine 

disruption and reduced energy stores. Consequently, the ability of oil sands process-

affected waters and substrates to support amphibian populations was tested by exposing 

wood frog eggs and tadpoles to a variety of OSPW and OSPS. Potential effects of oil 

sands contaminants on hatchability, tadpole survival, growth and development, and 

biomarkers associated with metamorphosis and body condition were evaluated. 

 

4.5.1 The effect of oil sands process-affected waters (OSPW) and substrates 
(OSPS) on the hatchability, survival and growth of wood frogs in 2006 and 
2007 

 
Hatchability of wood frog eggs was not affected by exposure to most of the 

OSPW treatments, with the exception of Jan’s Pond. Hatchability in this treatment group 

was reduced to less than half of the average of the reference treatments. The source of 

this adverse effect is uncertain, but Jan’s Pond exhibited the highest concentrations of 

many potentially toxic analytes of all water treatments. The list includes the metals boron, 

vanadium, chromium, cobalt, nickel, strontium, lead and uranium, as well as conductivity 

and hardness. Wood frog eggs are deposited in water. The embryos are surrounded by a 

vitelline membrane and a jelly capsule composed of mucopolysaccharides and 

mucoproteins (Freda, 1991). The absence of a hard shell makes the eggs potentially 

vulnerable to even the slightest changes in their environment, and may also facilitate the 
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uptake of contaminants present in the surrounding water and sediment (Greulich and 

Pflugmacher, 2004; Bridges, 2000).  

Survivability of wood frog tadpoles was drastically reduced by exposure to 

OSPW in both years (2006 and 2007). Four OSPW sources tested in 2006 and five 

OSPW sources evaluated in 2007 had less than 10% tadpole survivability compared to 

>50% and 76% in control treatments for 2006 and 2007, respectively. Previous work by 

Pollet and Bendell-Young (2000) also showed reduced survivability of wood frog 

tadpoles in OSPW. In both studies, tadpole mortality was not only greater but much more 

rapid in OSPW treatments compared to reference treatments. These results strongly 

suggest that OSPW is toxic to young wood frog tadpoles. Between the 2006 and 2007 

studies, a total of 10 different OSPW sources were evaluated for toxicity. The reference 

water (Loon Lake) showed drastic die-offs during the OSPW study in 2006. During the 

field study in 2005 (Chapter 3; Table 3.3), there were no tadpoles and/or newly-

metamorphosed froglets collected from Loon Lake. Pollet and Bendell-Young (2000) 

observed a similar trend in their site-specific reference waters. Their study showed high 

tadpole mortality and reduced weight and length when exposed to unimpacted sources. 

These OSPW-impacted and the reference sites represent a range of different effluent 

compositions and chemistries such that it is difficult to identify a specific toxic 

component. 

Survivability of wood frog tadpoles was not affected by exposure to OSPS. The 

tadpoles in all the substrate treatments were weighed and their total length determined at 

Gosner stage 37-39. Tadpole size and growth rate are important determinants in the 

timing and success of metamorphosis, which in turn is linked to fitness (Morey and 
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Reznick, 2001). Larger juveniles and those metamorphosing early are known to have a 

higher survival rate and earlier age at first reproduction (Gomez-Mestre and Buchholz, 

2007). Tadpoles exposed to OSPS had lower mean body weights, length and condition 

factors compared with the control substrate. Snodgrass et al. (2004) compared the effects 

of exposure to coal combustion wastes on Rana clamitans and Rana sylvatica larvae. 

Although, both species experienced decreased growth and developmental rates, Rana 

clamitans larvae were seen to have reduced survival and metamorphic success when 

compared with Rana sylvatica. These interspecies differences could very well be 

attributed to the longer larval period for Rana clamitans (~70 days), compared to Rana 

sylvatica (~40-90 days). Other studies with Rana sylvatica (Savage et al., 2002) have 

shown that direct contact with sediments contaminated with polychlorinated biphenyls 

may also result in reduced growth or body condition of tadpoles. 

 

4.5.2 The effect of oil sands process-affected substrates (OSPS) on whole body 
tadpole T3, T4 and triglyceride concentrations in 2007 

 
Whole body concentrations of T4 and the T3/T4 ratio were not significantly 

different among tadpoles exposed to any OSPS sources. Tadpoles exposed to saline sodic 

overburden (OSPS) exhibited lower whole body T3 concentrations compared with plain 

tailings sand (OSPS), but results were not significantly different from the control 

substrate. Tadpoles exposed to saline sodic overburden and coke treatments (OSPS) 

showed lower whole body triglyceride concentrations than tadpoles exposed to plain 

tailings sand (OSPS). These findings are consistent with the relatively lower body weight 

of the tadpoles in the former treatment groups. However, triglyceride concentrations in 

tadpoles exposed to the control substrate were not significantly different from tadpoles 
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exposed to any of the OSPS treatments. These results indicate that exposure of tadpoles 

to OSPS did not follow the expected trend for thyroid hormone function or energy 

storage when compared with the control substrate.  

These differences in thyroid hormones and triglyceride content could have 

resulted from varying salt, metal, hydrocarbon and naphthenic acid concentrations and/or 

the substrate type itself. Previous work by Sanzo and Hecnar (2006) showed that larval 

wood frogs exposed to salt concentrations between the range of 2636 and 5109 mg/L 

NaCl, exhibited reduced activity and feeding. The ecological implications of these effects 

can translate to higher susceptibility to predation, since with reduced feeding tadpoles 

require more time to metamorphose or metamorphose at a smaller size. Extended time to 

metamorphosis can reduce survival in wood frogs.  

There were no correlations between whole body triglyceride stores and T3 and/or 

T4 concentrations in tadpoles exposed to the various treatments, unlike results observed in 

Chapter 2 of this thesis. 

 

4.5.3 The impact of water and sediment chemistry on wood frog development 
 

4.5.3.1 Oil sands process-affected water exposure study 

Water quality and chemical contaminants can adversely effect the development, 

growth and subsequent survival of amphibian eggs and tadpoles. Sensitivity to specific 

contaminants and water quality variables varies with the stage of development. For 

instance, even though metals can adversely affect amphibian embryos, sensitivity to most 

metal exposure is far greater in the larval stage (Gross et al., 2007; Horne and Dunson, 

1995). In contrast, sensitivity to environmental pH is more pronounced in embryos than 
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in larvae (Freda, 1991). Other water quality factors are also known to reduce hatching 

success. For instance, low pH resulted in thoracic swelling and increased larval mortality 

in hatchlings of Jefferson and spotted salamanders (Pough and Wilson, 1977). In 

addition, low pH, increased cation levels or high dissolved metal concentrations may 

cause curling of the embryo within the vitelline membrane (Freda and Dunson, 1985; 

Clark and LaZerte, 1985), which can result in embryo mortality. In contrast, increased 

water hardness can ameliorate the adverse effects of both low pH and toxic metals (Freda 

et al., 1991). Gill surface permeability of larvae is reduced by increased water hardness, 

which acts to protect against whole body sodium loss, a principal mechanism of low pH 

and metal-induced toxicity (McDonald et al., 1991; McDonald and Wood 1993). 

Generally speaking, analysis of water used in the 2006 study showed high water 

hardness, alkalinity and dissolved oxygen content for the OSPW sources, whereas the 

reference source (Loon Lake) had the highest ammonia level. The OSPW samples also 

tended to have elevated metal concentrations, including boron, strontium, uranium, lead, 

nickel, cobalt, chromium, molybdenum, manganese, zinc and vanadium, but the range 

observed for most these analytes was large. Analyses of water sources used in the 2007 

study showed high pH, alkalinity, ammonia and dissolved oxygen content in OSPW from 

oil sands wetlands compared to the control. High levels of metals including boron, 

strontium and molybdenum were also found in 2007 OSPW samples. 

 

4.5.3.2 Oil sands process-affected substrate exposure study 

Some sediment-associated toxicants, including metals, can be absorbed through 

an amphibian’s water permeable skin and enter circulation for distribution to target 
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organs or sites of accumulation (Stolyar et al., 2008). Oral ingestion is another route of 

exposure to sediment contaminants. Physical examination of the wood frog tadpoles 

revealed the presence of sediments in the gut.  

High concentrations of vanadium and copper were found in the water overlaid on 

the coke substrate, whereas the coke itself contained elevated levels of vanadium, nickel, 

molybdenum and mercury. Coke is known to contain several classes of contaminants 

including numerous metals and polycyclic aromatic hydrocarbons (PAHs). In previous 

studies, coke obtained from Syncrude Canada Ltd. demonstrated low levels of leaching 

on exposure to different acids and a range of pH. Nickel and vanadium were the only 

metals removed, whereas molybdenum was concentrated in water associated with coke 

storage (Komex International Ltd., 1998). 

Overlay water analyses showed high concentrations of tin and barium in the 

consolidated tailings treatment while the substrate itself contained high manganese 

concentrations. In order to de-water the fine tails for settling, gypsum is added to produce 

consolidated tailings. The addition of gypsum results in a major accumulation of ions 

(SO4
2- from the gypsum itself, and Na+ and Ca2+ from the sediments). In addition to these 

ions, leaching from the oil sand ore itself during extraction releases Na+ and Cl-, which 

can result in high ionic content in CT waters (Renault et al., 1998). 

Water overlaid on saline sodic substrate had high concentrations of boron, nickel, 

zinc, strontium, molybdenum, cadmium, antimony, thallium and uranium. Chemical 

analysis of the substrate revealed that saline sodic overburden had the highest 

concentrations of most of the metals among all the treatments. Saline sodic materials 

contain high salt levels and the overburden usually consists of organic and glacial 
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material. Reclamation with saline sodic overburden may result in salt release, and 

potentially salt migration and salinization of groundwater, reclamation soils, and surface 

water (Oddie and Bailey, 1988). 

 

4.5.3.3 Effect of metals on amphibians 

Metals contamination can have severe impacts on aquatic ecosystems. Metals are 

found in water, suspended sediments and bottom sediments and they are not easily 

eliminated from aquatic environments (Forstner and Wittman, 1981). The magnitude of 

metal contamination is a good indicator of water quality, as well as the extent of potential 

anthropogenic contamination (Singh et al., 1997).  

Teratogenicity of various metals including cobalt, nickel, cadmium, copper and 

zinc in frogs has been assessed in previous studies (Luo et al., 1993a,b; Plowman et al., 

1991, 1994). Malformities such as intestinal and cardiac deformities have been observed 

in frog embryos exposed to cobalt (Plowman et al., 1991). Zinc and copper also produce 

malformations of the eye, gut, facial structure, notochord and cardiac anomalies (Luo et 

al., 1993a), while nickel exposure caused ocular, skeletal and intestinal deformities in 

frog embryos (Hopfer et al., 1991). Elevated boron concentrations adversely affect the 

development of amphibian embryos. Embryos of two species of salamanders (Jefferson 

salamander, Ambystoma jeffersonianum and spotted salamander, Ambystoma 

maculatum), wood frogs (Rana sylvatica) and American toads (Bufo americanus) were 

exposed to waste water effluent containing boron concentrations of 50 and 100 mg/L. 

Results indicated significant increases in the frequency of deformed larvae and reduced 

hatching rate (Laposata and Dunson, 1998).  

120 
 



Amphibian metamorphosis is regulated by and dependent on the action of thyroid 

hormones, T3 and T4. Consequently, disruption of thyroid function by environmental 

contaminants has significant impacts on amphibian populations. Metals such as cadmium 

have been reported to cause structural and functional damage to thyroid follicular cells in 

female rats (Pilat-Marcinkiewicz et al., 2003) and fish (Ricard et al., 1998). Cadmium 

may hinder thyroid function by inhibiting the conversion of T4 to T3 (Chaurasia et al., 

1996; Gupta et al., 1997; Gupta and Kar, 1999; Paier et al., 1993). Accumulated 

cadmium in the mitochondria of thyroid follicular cells is thought to cause inhibition of 

the synthesis and release of thyroid hormones (Yoshizuka et al., 1991). A decrease in 

whole body T3 levels was reported in tadpoles of Xenopus laevis following cadmium 

exposure (Fort et al., 2000). Other metals and salts such as magnesium, copper and 

calcium in their divalent forms can also chelate to thyroid hormones and alter their 

function (Norris and Carr, 2005; Hoch, 1962; Wahlborg and Frieden, 1965). 

Fats and their component triglycerides are primary forms of energy storage in 

frogs. Several studies demonstrate the effect of metals in reducing lipid stores in 

amphibians (Vogiatzis and Loumbourdis, 1999, 2001; Rowe et al., 2009). A study 

conducted by Rowe et al. (2009) of dietary exposure to vanadium in southern leopard 

frogs (Rana sphenocephala) revealed lower growth rates, survival and reduced ability to 

store lipids in tadpoles. Exposure to cadmium resulted in depleted hepatic fat and general 

lipid stores in the marsh frog (Rana ridibunda), an indication of energy reserve 

exhaustion.  
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4.5.4 Future work 

The exposure of wood frog eggs and larvae to a variety of OSPW in both 2006 

and 2007 produced similar results for tadpole survival and growth. The rapid mortality of 

young tadpoles and very low survival in water from all sites indicates that OSPW may 

not be suitable for sustaining viable amphibian populations. However, these results are 

not necessarily consistent with field observations as reported in Chapter 3 and in a 

mesocosm study conducted in oil sands wetlands concurrent with this lab-based 

experiment (Hersikorn, 2009). The present OSPW-only exposure study did not take into 

account potential buffering effects of the sediments/substrates that are also present in the 

oil sand process-affected wetlands.  

The sediment-only (OSPS) exposure study reported here was conducted with 

tadpoles that had reached more advanced developmental age (Gosner stages 27-30). 

Consequently, those animals may have been relatively more tolerant of OSPS 

contaminants and water quality parameters such as low pH than newly hatched tadpoles. 

In addition, the OSPS study did not represent a “real” scenario as encountered in field 

situations, since substrates and water from the same sources were not tested 

simultaneously. However, this study was a useful first attempt at interpreting the role of 

substrates separately from the natural overlaying water component in a wetland system.  

A useful extension of this work would involve exposing wood frog eggs to 

various OSPS treatments and monitoring the hatchability and survival of newly-hatched 

larvae. In addition, it would be ideal to test the effects of OSPW and OSPS together on 

wood frog morphological and biochemical endpoints. Additional work is needed to 
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identify toxic constituents and evaluate the potential role of wetland sediments in 

buffering the effect of OSPW water on wood frog eggs and tadpoles. 
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CHAPTER 5 
5.0 General Discussion 

 
 

5.1 Project rationale and summary 
 
The oil sands industries in the Athabasca region of northern Alberta face the 

unique challenge of incorporating both reclaimed aquatic and terrestrial habitats into self-

sustaining ecosystems. To meet this challenge, a wetland-based approach is being 

strongly considered to reclaim oil sands process-affected materials (OSPM) and provide a 

suitable environment for species indigenous to the area. The large volumes of OSPM 

currently held within large tailings ponds are in keeping with the industry’s zero-

discharge policy. Seeping from these ponds has caused pooling in areas where obligate 

wetland species have become established (Crowe et al., 2001). The objective of this study 

was to evaluate the effects of OSPM on the survival of wood frog (Rana sylvatica) eggs 

and larvae, as well as on several morphological and biochemical endpoints related to 

tadpole growth and development.  

Chapter 2 of this thesis outlined the development of two novel biomarkers for 

wood frog tadpoles, and the application of those biomarkers in an experiment to establish 

changes in baseline values over the course of metamorphosis. Changes in whole body 

thyroid hormones (3,5,3’-triiodothyronine [T3] and thyroxine [T4]) and triglyceride (TG) 

concentrations were measured at regular intervals during tadpole development from 

embryonic Gosner stage 19 through to completion of metamorphosis at Gosner stage 46. 

Peak levels of T4 observed during the prometamorphosis (Gosner stage 31-40) did not 

follow the expected trend. In contrast, as predicted, T3 and triglyceride concentrations 

were highest at metamorphic climax (Gosner stage 40-46) and prometamorphosis, 
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respectively. Alterations in whole body thyroid hormone and triglyceride concentrations 

during wood frog development may be useful indicators of the condition of the thyroid 

gland and the overall health of the developing tadpole. Furthermore, these results 

illustrate the importance and role of each endpoint at different stages of wood frog 

metamorphosis. These newly developed biomarkers were subsequently used to measure 

whole body T3, T4 and triglyceride concentrations in tadpoles exposed to OSPM in the 

field and the laboratory, to determine potential contaminant effect on these biomarkers. 

Chapter 3 outlined a field study conducted in summer 2005 to assess the presence 

of wood frogs in the Athabasca oil sands region. Several OSPW-impacted and 

unimpacted sites were surveyed and wood frog specimens were collected on Syncrude 

and Suncor lease lands. Morphometric and biochemical endpoints were assessed in this 

study to evaluate the overall body condition of wood frogs susceptible to potential 

adverse effects of exposure to the OSPW wetlands. Although no discernible differences 

were seen between impacted and unimpacted wetlands regarding wood frog growth and 

body condition, the presence of this species was established in these wetlands via 

trapping and visual surveys.  

Chapter 4 described the exposure of wood frog eggs and tadpoles to OSPW and 

substrates under controlled laboratory conditions. Endpoints reflecting larval growth and 

development were assessed to ascertain the individual contributions of OSPW and OSPS 

to potential toxicity. Although, hatchability was not severely affected by OSPW 

exposure, survivability of newly-hatched tadpoles was adversely affected in most of the 

OSPW treatments when compared with the control water. Older tadpoles (post-feeding 
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stage) exposed to OSPS had overall lower mean body weight, length and condition factor 

when compared to clean sand control. 

 

5.2 Endpoints evaluated 
 
Thyroid hormones (T3 and T4) are essential physiological triggers of 

metamorphosis in larval amphibians (Fort et al., 2007; Shi, 2000). Environmental 

chemical contaminants can alter thyroid hormone function and adversely affect 

metamorphosis (Degitz et al., 2005; Opitz et al., 2005). During the field study (Chapter 

3), whole body tadpole T3 concentrations in tadpoles from one reference wetland was 

significantly higher than OSPW sites. This observation may reflect a contaminant effect, 

but the effect of variation in tadpole age among wetlands may confound this result. 

Results of the experiment reported in Chapter 2 demonstrated that T3 concentrations can 

vary depending on the stage of tadpole development. Thus the minor differences in 

developmental stages of field-collected tadpoles may have obscured any contaminant 

effect on T3 status. During laboratory exposures (Chapter 4), no consistent differences in 

T3 were found between tadpoles exposed to OSPS and the control substrate. In both the 

field and laboratory-based studies, T4 and T3/T4 concentrations in tadpoles exposed to 

process-affected materials were not different from the control substrate. These results 

suggest that exposure to the substrate component (at least) did not alter thyroid hormone 

status in developing tadpoles.  

Hepatic glycogen stores are essential to enable freeze tolerance and consequent 

winter survival of wood frogs (Storey and Storey, 2004). Studies with wood frogs have 

shown that animals with larger hepatic glycogen stores have the capacity to synthesize 
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greater amounts of cryoprotectant than frogs with smaller hepatic glycogen reserves 

(Costanzo and Lee, 1993; Costanzo et al., 1993). During the 2005 field study, hepatic 

glycogen concentrations were not different among newly-metamorphosed wood frogs 

from reference and OSPW wetlands (Chapter 3), although the highest glycogen 

concentration was observed in frogs from an OSPW site. The field study was a very 

preliminary effort, so results have to be interpreted with caution. At this point, it appears 

that wood frogs that are able to reach metamorphosis in most OSPW wetlands do not 

have lower energy stores than frogs from unimpacted wetlands. 

Total body triglyceride concentration is another potentially useful biomarker to 

evaluate the health of developing tadpoles. Amphibians may experience periods of 

energy deprivation due to resource-poor habitats or during seasonal periods of limited 

food availability. In such cases, energy stores become vital for survival (Rowe et al., 

2003). Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial 

survival (Scott et al., 2007). During the 2005 field study (Chapter 3) triglyceride levels 

generally were found to be higher in tadpoles from reference wetlands than in OSPW-

impacted sites. However, during the 2007 OSPS-exposure study (Chapter 4) there were 

no differences between the tadpoles exposed to OSPS and control treatments. Thus, the 

lower lipid content of metamorphs in the field study may reflect the habitat quality of 

OSPW sites as well as contaminant stress.  

Morphometric indices such as body weight and length, and estimates of body 

condition derived from these measures, can be correlated with fitness. Advantages of 

metamorphosing at a larger size include higher survival, earlier maturity, larger size at 

first reproduction and greater clutch size in females (Scott et al., 2007). In the field study 

127 
 



(Chapter 3), observed differences in mean body weight and length of tadpoles among 

OSPW and reference wetlands were not consistently related to contaminant exposure. 

Differences in habitat quality and food availability, as well as variability in stage of 

development at collection (Gosner stage 37-43) may have confounded potential 

contaminant effects. Tadpole growth is known to be limited by temperature, food 

availability, toxicant exposure and other forms of stress (Shi, 2000). In the laboratory 

study (Chapter 4), lower mean body weights, length and condition factors were observed 

in tadpoles from OSPS treatments when compared with the control substrate. Tadpoles 

from one of the OSPS treatments with lower body weight and length also exhibited 

delayed metamorphosis compared with other substrates. Previous studies have shown that 

time to metamorphosis increases in the presence of some xenobiotics, and this delay may 

be accompanied by a reduction in tadpole weight and size (Venturino et al., 2003).  

Hatchability of wood frog eggs was reduced with exposure to one OSPW source 

compared with other water treatments (Chapter 4). Although a specific cause could not be 

identified, chemical analysis indicated that this OSPW had highest concentration of 

several metals, as well as total conductivity and hardness of any source tested. Previous 

work has indicated that several of these contaminants, including boron (Laposata and 

Dunson, 1998), cobalt (Plowman et al., 1991) and nickel (Hopfer et al., 1990) cause 

increased deformities and mortality in amphibian embryos. Wood frog tadpole survival 

was affected by exposure to all OSPW in both 2006 and 2007 such that tadpoles were 

unable to complete metamorphosis. Survival of tadpoles during the 2006 and 2007 

OSPW exposure studies was not high enough to assess thyroid hormone and triglyceride 

concentrations. Study by Pollet and Bendell-Young (2000) supports these findings as 
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amphibians exposed to OSPW experience higher mortality rates and reduced growth. The 

substrate exposure study involved exposure of pre-feeding tadpoles (Gosner stages 27-

30) to OSPS and control substrate overlaid with clean water. Unlike the OSPW exposure, 

OSPS exposure alone did not reduce survivability compared to control substrate. The 

experiments are difficult to compare, because tadpoles were introduced to OSPW earlier 

in development (as eggs in 2006 and newly hatched larvae in 2007) than with the OSPS 

exposure study, and earlier life stages may be more susceptible to acute toxic effects. 

Comparisons of metals concentration of OSPS overlay water with OSPW concentrations 

reveal potential differences in metals exposure. The contribution of the substrates and of 

any organic contaminant or salts, are unknown. 

Limited water and substrate chemistry analyses were carried out for OSPW and 

substrates used for wood frog exposures. Water chemistry provided in support of the 

2005 field study did not include metal analysis or organic contaminants, and provided 

only limited insight into contaminant-specific interpretation of observations on the 

presence and condition of tadpoles and newly-metamorphosed wood frogs. Elevated 

metal and salt concentrations were observed in OSPW and substrates used in laboratory 

exposures in 2006 and 2007. Metal contamination of aquatic environments can lead to 

lower survival and growth rate of amphibian larvae, as well as adverse effects on thyroid 

hormone status and energy stores with attendant impacts on fitness (Chen et al., 2007; 

Pilat-Marcinkiewicz et al., 2003; Rowe et al., 2009). Alterations in salinity, hardness and 

pH can be equally detrimental to tadpole development (Gomez-Mestre and Tejedo, 2004; 

Freda et al., 1991). However, since OSPW and OSPS represent complex mixtures of 

numerous potentially toxic compounds, characterizing the toxic effects of one or a few 
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individual chemicals alone is insufficient to assess the suitability of reclaimed wetlands 

as a habitat (Pollet and Bendell-Young, 2000). Studies of the specific mixtures 

themselves with ecologically relevant model species are essential. The study reported 

here represents a preliminary effort to apply this approach.  

 

5.3 Conclusion 
 
The production of oil from oil sands can be divided into three main activities, 

namely mining, extraction, and upgrading, each process having the potential to affect the 

environment in different ways. This study demonstrates that in a controlled laboratory 

setting oil sands process-affected materials have an adverse effect on wood frog survival, 

growth and development. Hersikorn (2009) conducted a semi-field study involving in situ 

exposure of wood frog tadpoles in mesocosms located in selected reclaimed wetlands, 

which was intended to complement the present laboratory-based exposure scenario. The 

results of the in-situ exposure study showed that OSPM-affected wetlands that were less 

than 7 years old (considered to be “young”) would not support amphibian life, due to 

acute toxicity to tadpoles. In contrast, wetlands older than eight years (referred to as 

“old”) containing OSPM show amphibian survival similar to unimpacted wetlands. 

Furthermore, tadpoles raised in young OSPM wetlands demonstrated high mortality, 

delayed metamorphosis and lower T3/T4 ratio when compared with reference or old 

OSPM-impacted sites. These mesocosm results are similar to the OSPW exposure study 

performed in the laboratory in that high mortality was encountered for tadpoles exposed 

to some OSPW sources. The experimental design for the laboratory exposures did not 

intentionally focus on the specific age of a wetland, although the sources tested represent 
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at least a limited range. Previous work with OSPM-impacted wetlands has shown that 

natural ageing of these sites can reduce toxicity of OSPW as measured by the Microtox® 

bioassay (Quagraine et al., 2005). Degradation of polycyclic aromatic hydrocarbons and 

naphthenic acids has been shown to occur due to microbial communities in these 

wetlands, which can reduce toxicity over time (Madille et al., 2001; Lai et al., 1996). 

Both field and laboratory studies provide unique information and have advantages 

and disadvantages. The mesocosm approach represents the “real-life” situation 

experienced by animals on site and takes into account interaction between various 

physical, chemical and environmental stressors. It allows researchers to control certain 

variables in the field, such as predation (to some degree), and at the same time allows for 

exposure to natural conditions such as variations in temperature, photoperiod and water 

quality (Harris et al., 2001). Furthermore, the combination of food resources available to 

a tadpole in the field (periphyton and debris in the sediment, etc.) may provide a higher 

nutritional plane or enhance the immune response when contaminants are present. 

The laboratory-based study, on the other hand enables control of environmental 

variables such as meteorological conditions, risk of predation and exposure to infectious 

agents that may affect survival, growth, and other physiological endpoints, and thus 

confound results of mesocosm studies. In addition, the laboratory approach allows 

separate evaluation of potential toxic effects of OSPW and various substrates to 

amphibian eggs and tadpoles. Separating the impacts of sediment from overlaying water 

is more difficult with in situ exposures.  

The combination of both of these amphibian studies has left many unanswered 

questions. Future work should include laboratory exposures with both OSPW and OSPS 

131 
 



to assess their impact on amphibians concurrently. Consideration may be given to 

obtaining eggs from local (but non-OSPM) wetlands for laboratory exposure, since local 

populations may exhibit increased tolerance. In addition, more extensive water chemistry 

analyses including naphthenic acids and other organics and hydrocarbons should be 

conducted on all OSPW and OSPS sources, to attempt to identify the most significant 

contaminants to each stage of development. 
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APPENDIX 1 
 
 
Summary of call ratings and their description from the Wisconsin frog and toad 
survey (Droege, USGS Patuxent Wildlife Research Center). 
 

Call Rating Call Description 

0 No frogs or toads were heard 

1 Individual calls were heard but were not overlapping 

2 Overlapping calls but individuals were still distinguishable 

3 Numerous frogs can be heard, chorus is constant and overlapping 
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