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Abstract Management of urban aquatic habitats for native wildlife, such as amphibians, is an
important contemporary goal for many municipalities. However, our understanding of how
local and landscape characteristics of urban aquatic habitat promote or inhibit amphibian
occupancy and recruitment is limited. In this study, we examined amphibian community
composition and occurrence patterns in ponds, wetlands, and swales of Gresham, Oregon.
We collected occurrence data for five native amphibians: northwestern salamander
(Ambystoma gracile), long-toed salamander (A. macrodactylum), Pacific chorus frog
(Pseudacris regilla), northern red-legged frog (Rana aurora aurora), and rough-skinned newt
(Taricha granulosa) as well as one non-native amphibian, the American bullfrog (Lithobates
catesbeianus). One hundred sites were surveyed from 2007 to 2013. Local and landscape
attributes were characterized for each site, and potential drivers of species occupancy were
evaluated using a combination of multivariate approaches and generalized linear models. In
general, percent impervious surface and distance to nearest forest patch, both associated with
urbanization, were negatively correlated with site occupancy for all species. Non-native
vegetation was also negatively associated with occupancy of three species (long-toed sala-
manders, Pacific chorus frogs, and northern red-legged frogs). In contrast, occupancy was
positively correlated with pond depth and hydroperiod length for all species. We found
evidence of two distinct groups of co-occurring amphibian species driven by habitat depth
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and hydroperiod. Finally, we report results of threshold analyses that examined species-
specific habitat associations. This study describes urban habitat associations of a native
amphibian community, identifies factors with positive, negative or mixed relationships with
amphibian species, and is an important step in informing the management of urban aquatic
habitat to promote persistence of native amphibians.

Keywords Amphibianhabitat .Amphibianmanagement .Habitatoccupancy.Habitat threshold
. Hydroperiod . Urban landscape

Introduction

Human modification of the landscape for agricultural and developmental purposes has resulted
in increasingly modified and isolated aquatic habitats worldwide, often to the detriment of
native flora and fauna. As a result, urbanization is recognized as a major global threat to
species diversity (Czech et al. 2000; Foley et al. 2005; Scheffers and Paszkowski 2012).
Species with complex habitat requirements and life cycles, such as pond-breeding amphibians,
are especially vulnerable to habitat loss and degradation (Becker et al. 2007). Wetlands and
wet prairies in the Willamette Valley of the Pacific Northwest have declined significantly over
the last 160 years (Titus et al. 1996). Depending on wetland type, historical cover has declined
by 57 to 99.5 % since 1850 (ORBIC 2013). In urban areas, natural aquatic habitats are often
isolated or are altered enough that their value as habitat for native wildlife is unclear (Vitousek
et al. 1996; McKinney 2002). In addition, manmade aquatic habitats such as stormwater
retention ponds and water treatment facilities are often required features of new developments
and may offer important surrogate habitat to many native aquatic species, particularly as they
may be the only still-water habitats available in highly modified environments (Scheffers and
Paszkowski 2013). However, researchers have only recently begun to explore the role of
manmade and altered natural aquatic habitats in the preservation of amphibian populations
across urban landscapes (Birx-Raybuck et al. 2010; Brand and Snodgrass 2010; Hamer and
Parris 2011). Characteristics such as water depth, hydroperiod, plant diversity and availability
of refugia are important for a range of aquatic species but are rarely considered during the
design and construction of facilities (where storing and filtering stormwater is the primary
goal) or the management of remnant wetlands and ponds (Brand et al. 2010; Brown et al.
2012). Some urban aquatic habitats can even act as Becological sinks^ (McCarthy 2009) that
attract breeding adults but fail to recruit juveniles due to inadequate hydrology or vegetative
cover (Richter and Azous 2000). In addition, connectivity between aquatic and terrestrial
habitats has been shown to be crucial for the survival and persistence of many amphibian
species (Pope et al. 2000; Semlitsch and Bodie 2003). Such connectivity may be limited in
highly urbanized environments.

Recently, some municipalities have begun including the creation of wildlife habitat as an
equally important goal when designing stormwater facilities or mitigating impacts of city
construction projects on aquatic habitats (e.g. City of Chicago 2006; City of Seattle 2015).
Understanding how biotic and abiotic habitat characteristics affect amphibian communities in
highly urbanized environments is critical for informing project designs that promote healthy
amphibian populations, yet few studies have examined those relationships. The objective of
this study was to further the current understanding of the types of urban aquatic habitats used
by amphibians and identify patterns and potential environmental drivers for species occupancy
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over a suite of both within-wetland and landscape variables in Gresham, Oregon. The results
from this study will help inform land management strategies that aim to incorporate the habitat
needs of native amphibians at both the community and species level.

Materials and methods

Study area

This study was conducted within the city limits of Gresham, Oregon, USA (Multnomah County).
Gresham is the fourth largest city in Oregon with a population of 109,000 people (US Census
Bureau 2007) and is part of the greater metropolitan area of Portland, Oregon. Gresham is roughly
60.9 km2 with 41 % impervious or Bbuilt^ surface. The local climate is cool-summer Mediter-
ranean with an average rainfall of 110 cm mostly occurring between November and March.
Average monthly temperatures range from 8 C (December) to 28 C (July and August).

Site selection

In Gresham, breeding habitat for aquatic amphibians is primarily concentrated in floodplain
pockets near streams or in isolated stormwater facilities and ponds within developed areas. In
order to assemble a comprehensive list of all aquatic habitats available to breeding amphibians
in Gresham, we initially evaluated 234 ponds, wetlands and swales identified from the Fish
and Wildlife Service’s 2003 National Wetland Inventory, the Portland-METRO region’s 2003
Local Wetland Inventory, a Gresham Watershed Division database of manmade ponds, water
quality facilities, and swales (see Appendix 1 for database information; all spatial data were
managed and queried in a geographic information system - ESRI 2011), and field investiga-
tions. We sought permission to access any sites identified on private lands. Over a 7-year
period, we surveyed each site from 1 to 7 years each. Due to logistical constraints, not all sites
were visited each year. Sites surveyed less than 3 years were discarded from analyses presented
in this study. Sites were categorized as either Bman-made^ (stormwater ponds and swales built
specifically for the detention and/or treatment of stormwater runoff) or Bnatural^ (historical
groundwater or floodplain wetlands that according to aerial imagery have been present since at
least 1936 – the earliest aerial imagery available to us for analysis; Fig. 1).

Amphibian sampling

Our study included five native pond-breeding amphibian species found in theGresham area: the
northwestern salamander (Ambystoma gracile), the long-toed salamander (A. macrodactylum),
the Pacific chorus frog (Pseudacris regilla), the northern red-legged frog (Rana aurora aurora),
the rough-skinned newt (Taricha granulosa) and one non-native amphibian, the American
bullfrog (Lithobates catesbeianus).

Egg mass surveys Sites were surveyed for egg masses every 3–4 weeks between late
January and mid-April, the primary breeding season of species in the region. We searched
for egg masses near the edges of standing water and within vegetation in water up to 150 cm
deep using protocols described in Corkran and Thoms (2006). All egg masses for each species
were recorded; in addition, any adults seen or heard during field sampling were recorded.
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Larval surveys Larval surveys were also conducted every 3–4 weeks between late April and
mid-July, or until the site dried for the season. At each larval survey visit, direct observations of
free-swimming larvae were recorded and identified to species. In addition, a D-frame dip-net
(30 cm diameter; 500 μm mesh) was used to sample each microhabitat within a site. All
amphibians and fish were identified, counted and released. While American bullfrogs do not
lay eggs until June/July in the study area, tadpoles often persist for 1 to 2 years at a site; thus,
larval surveys paired with calling surveys remain a good method of determining the presence
of American bullfrog breeding populations at a site.

Habitat characteristics

Each site was characterized by eight local variables describing the physical and biotic habitat
within 10 m of the water’s edge. These variables were chosen due to their ease of collection,
comparability across study systems, and their recognized importance for amphibian occur-
rence. We measured: pond age, aquatic footprint, percent shoreline cover, depth, presence of
fish, percent floating and submerged vegetation, hydroperiod, and percent cover by non-native
plants at each site. Age (Age) of built facilities was determined through reviewing as-built data
collected from the Gresham Stormwater Division for created facilities. Examination of histor-
ical aerial photographs was used to determine the age of natural wetlands to a maximum of
78 years, because aerial photographs with coverage of the entire city dated 1935 are the earliest
we were able to obtain. We determined aquatic habitat footprint (in m2; Area) as ordinary high
water levels for each of selected sites using GIS shapefiles of aerial photographs from 2010
resolved to 1:2000. Total annual precipitation (TAP) in 2010 was representative of the TAP
across the range of years covered by this study (26.71^ total precipitation in 2013, 50.43^ in
2012, and 37.09^ in 2011, 46.18^ in 2010, 30.50^ in 2009, 27.12^ in 2008, and 32.06^ in
2007; NOAA 2016), and repeated site visits indicated that the aquatic habitat footprint did not
significantly change over the 2007–2013 study interval. Percent shoreline cover (Cover)
represents an ocular estimate of the amount of the shoreline within 10 m of the water’s edge
covered by any material that could be used as refugia by amphibians moving to or away from a
site (for example, rocks, logs, sticks and debris). Maximum pond depth at the deepest point

Fig. 1 The photo on the left is site P39, which is a constructed water quality facility. Site FC05c, the photo to the
right, is a natural floodplain wetland. Long-toed salamanders and Pacific chorus frogs were found at both sites.
Photo credit: Laura Guderyahn
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(Depth) was measured during each amphibian sampling visit and then averaged for each site to
produce an average depth variable. Presence of fish was recorded during egg mass and larval
surveys (Fish). Percent floating and submerged vegetation (FloatSubVeg) represents an ocular
estimate of the area of the aquatic footprint covered by these types of vegetation. Hydroperiod
(HydroP) was calculated as the average number of days that the site held any amount of water
from January 1 to July 15th (a maximum of 196 days); we rarely visited a site after July 15th in
a given year. Finally, percent cover by non-native vegetation (NonNatVeg) represents an ocular
estimate of the area within 10 m of the water’s edge covered by any non-native plant species.

Landscape characteristics

Site boundaries were determined from ordinary high water levels using the same procedure as
when determining the aquatic footprint of the sites (described above). We quantified ten
landscape-scale variables using land-use data and aerial photography (see Appendix 1 for
details): percent total impervious surface (e.g. road or building) within a 200 m buffer
(Built200); percent total impervious surface within a 1000 m buffer (Built1K); distance to
nearest forest patch of sizes 50 m2 (For50), 200 m2 (For200), 500 m2 (For500), 1000 m2

(For1K), 2500 m2 (For2.5 K), and 5000 m2 (For5K); distance to other known wetland or pond
site (NearSite) and distance to nearest perennial stream (NearStream). We characterized
impervious surface and vegetative cover within both a 200 m and a 1000 m buffer around
each site, because recent studies have determined that landscape characterization at these
scales may provide the best prediction for species occupancy (Houlahan and Findlay 2003;
Skidds et al. 2007; Ostergaard et al. 2008). Percent impervious surface (Built200 and Built1K)
was calculated using regional tax lot and land use data (see Appendix 1 for dataset informa-
tion). Distances from each site to the nearest pond and stream were calculated using straight
line measurements derived from 2010 aerial photography (scale 1:2000). Finally, several of
our target species are known to be dependent on forested habitats for aestivation and
overwintering (Leonard et al. 1993; Corkran and Thoms 2006; Hayes et al. 2008). For that
reason, we evaluated the minimum distance between each site and forest patches of different
sizes (described above). Forest patch sizes were calculated using a regional land use dataset
(see Appendix 1 for dataset information).

Statistical analyses

Data screening and transformations To reduce uncertainty associated with low sampling
effort, sites sampled less than 3 years total were excluded from the final dataset. To account for
variable sampling effort, we calculated a proportional occurrence value for each site by dividing
the number of years a species was observed by the number of years the site was sampled
(observations/effort). Sites were examined for spatial autocorrelation using Moran’s I and
Geary’s c, and sites within autocorrelated distance bins (200m distance and less) weremanually
evaluated to determine whether inclusion in the final dataset was justified. Environmental
variables were examined and were transformed (via log transformation) where applicable to
achieve amore normal distribution. Environmental variables were also screened for collinearity,
and highly correlated variables (r>0.8) were generally not included in the same models.

Data analysis Fisher’s exact test (Fisher 1922) was used to determine whether species-level
occupancy of different site types (manmade versus naturally occurring wetlands) differed from
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expected. Multivariate statistics were used to explore patterns of amphibian community
composition and to determine which, if any, local and/or landscape variables were closely
related to community composition patterns. Community data included proportional occurrence
data for all six amphibian species. We calculated assemblage dissimilarity using Bray-Curtis
distance (Legendre and Legendre 2012) and applied nonmetric multidimensional scaling
(NMDS) to visualize patterns of community composition. We also calculated correlation
coefficients between the axes of the NMDS ordination and explanatory (local and landscape)
variables to determine which explanatory variables were related to community composition.
Only explanatory variables with correlation coefficients of r= |0.3| and above were considered.
The NMDS analysis was performed using the statistical software R, version 2.15.0 (R Core
Team 2013) with the ‘vegan’ package, version 2.0–3 (Oksanen et al. 2012).

We employed an information-theoretic approach (Burnham and Anderson 2002; Hobbs and
Hilborn 2006) as an alternative to traditional hypothesis testing to compare and select models
most supported by our data. We fit generalized linear models (GLMs) with a binomial
probability distribution and a logit link to accommodate the proportional occurrence data. To
avoid unstable models associated with few observations per variable, we aimed to retain a
conservative minimum ratio of ten observations to each explanatory variable as recommend by
Peduzzi et al. (1996). To achieve this we examined two sets of explanatory variables for each
species: one with local explanatory variables (N=8), and one with landscape explanatory
variables (N=10). Only species observed at >15 % of sites were included in GLM models as
high rates of absences can lead to unstable models (Lemckert and Mahony 2011). Global
models and their Akaike Information Criteria (AIC, Akaike 1973) were calculated using the
package BMuMIn^ (Bartoń 2014) in R. The difference between the AIC of a particular model
and the AIC of the estimated best-fitting model (i.e. the model with the lowest AIC) is delta
(Δ) AIC. Models withΔAIC<2 have strong support (Burnham and Anderson 2002). We thus
retained models with ΔAIC<2, and model weights for variables in supported models were
summed to provide an overall weight for each variable (Burnham and Anderson 2002). A
value of 1.0 indicates that the variable was included in every supported model, and values
closer to 0 indicate the presence of the variable in only one or a few supported models. This
procedure was performed for both local and landscape variables independently; the variables
with the highest weight (up to n=5) from both groups were then combined to evaluate local
and landscape variables together (up to n=10 environmental variables).

Models that include both species and environmental drivers together help elucidate relative
strengths of drivers and help highlight complex interactions, but evaluating relationships
between a single species and a single environmental variable may help elucidate true drivers
of species occurrence and abundance. Single-species, single-variable models are also of
interest to managers who may be forced to optimize only one or a few variables at a time.
We examined single-species, single-variable relationships between proportional occurrence
and a subset of environmental variables identified both by NMDS and GLM analyses as
important. We also looked for the presence of thresholds in these relationships using an
iterative procedure to estimate the breakpoints and slopes of multiple segmented relationships
with the linear predictor, as implemented in the R package Bsegmented^ (Muggeo 2008). Data
were binned according to values of explanatory data. Equal deciles of explanatory data were
used unless breaks by decile resulted in identical values. For example, built environment and
forest distances (Built 200, Built1K, and Forest500) had>10 % of the data with a value of 0.
Binning by equal deciles would have resulted in multiple bins with values equal to 0. In those
cases, we instead binned first by identical values, then by dividing the remaining data points in
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bins with counts as close to equal as possible. A weighted regression approach was then used
in threshold detection in order to account for different sizes of bins. We also examined simple
linear regression between bins of environmental and occurrence data (weighted where appro-
priate) to compare the fit of simple linear regression to the threshold models.

Results

Our final dataset included 100 sampling sites (134 of the original 234 sites that were surveyed
had less than 3 years of occupancy data and so were excluded from the local and landscape
characteristic analysis; Table 1). Of the 100 sites included in this study, 21 were Bnaturally^
occurring floodplain wetlands (though many have been altered to accept piped stormwater
during high flows), whereas 79 were vegetated stormwater facilities such as ponds or swales,
created expressly for the treatment and/or detention of stormwater (Fig. 2). None the species in
this study were found to have a significant association with either Bnatural^ wetlands or Bman-
made^ stormwater facilities (Appendix 2; Appendix 3). High correlations between distances to
forest patches of various sizes were observed. For this reason, only two forest patch sizes were
retained: distance to a smaller minimum forest patch size of 500 m2 (correlated with distances
to patch sizes of 50, 200, and 1000 m2; r≥0.80), and distance to a larger minimum forest patch
size of 5000 m2 (correlated with patch sizes 1000 and 2500 m2; r≥0.82). Note that we found a
significant correlation between hydroperiod and depth (r=0.87), but we retained both vari-
ables as the mechanisms by which these affect species may be fundamentally different (Brooks
and Hayashi 2002).

Nonmetric multidimensional scaling of proportional occurrences revealed two distinct
groups of species. Group 1 included long-toed salamanders, Pacific chorus frogs, and northern
red-legged frogs, with overlapping proportional occurrences that were generally positively
associated with the first axis and negatively associated with the second axis (Fig. 3b, c, d;
Group 1 members shown in gray). Group 2 included the northwestern salamander, the
American bullfrog, and the rough-skinned newt (Fig. 3b, c, and d; Group 2 members shown
in black). Species in Group 2 were not as tightly clustered as those in Group 1, but they had
broad overlap and similar associations with both axes (negative for both axis 1 and 2).
Proportional occurrences of both groups were positively related to Depth and HydroP, and
all species were negatively related to Built200 and For500 (Fig. 3a). We also observed a
negative correlation between members of Group 1 and both Fish and NonNatVeg (Fig. 3a).
Group 2 was modestly and positively correlated with both Fish and NonNatVeg (Fig. 3a).

Generalized linear models were used to examine relationships between environmental drivers
and species proportional occurrences of northwestern salamanders, long-toed salamanders, Pacific
chorus frogs, and northern red-legged frogs (Table 2). Note that American bullfrogs and rough-
skinned newts were excluded from GLM modeling efforts due to a high proportion of absences
across sites (>85 %). Generalized linear models revealed some consistent effects of environmental
variables across species. For example, Built200 was strongly and negatively correlated with
proportional occurrence of all four species. For500 was also negatively correlated with all species,
but the relationship varied in strength across species. FloatSubVegwas negatively associatedwith all
species except the northwestern salamander, although only modestly so. HydroP was strongly and
positively correlated for three of four species (all except the northwestern salamander, which instead
had a strong and positive correlation with Depth).
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Generalized linear model models also revealed that some environmental variables differed in
their effects by species. Age was strongly and negatively correlated with two species (long-toed
salamander and the Pacific chorus frog) but had only a weak positive relationship with the
northwestern salamander and was not retained in any northern red-legged frog models. Con-
versely, Built1K had a strong, positive correlation with two species (long-toed salamander and
Pacific chorus frogs) but small and variable effects on the other two species (weak positive for
northwestern salamanders; weak negative for northern red-legged frogs). Both Fish and For5K
had modest to weak relationships that varied by species (negative for long-toed salamanders and
Pacific chorus frogs; positive for northwestern salamanders, no relationship with northern red-
legged frogs). NonNatVeg and NearStream also had modest relationships that varied by species
(positive for northwestern salamanders, negative for all other species). Finally, NearSite and
Cover had only modest contributions to one or two species, respectively.

Weighted linear regression and threshold analysis also excluded American bullfrogs
and rough-skinned newts due to a high number of absences. Environmental variables
considered included Depth, HydroP, Age, NonNatVeg, Built200, Built1K, and For500,
identified as important both by NMDS and GLM approaches. Results revealed that both
Depth and HydroP had significant relationships with all four species considered
(Table 3). A significant, positive linear relationship between Depth and the northwestern
salamander was identified. A depth threshold was identified for three of four species
(long-toed salamander at 45.5 cm, Pacific chorus frog at 50.2 cm, and the northern red-
legged frog at 58.6 cm). The relationship with Depth was positive up to the threshold
and negative for depths greater than the threshold for all three species (Fig. 4b, d, and f).
HydroP was positively and linearly related to the northwestern salamander, the long-toed
salamander, and the Pacific chorus frog occurrence. A HydroP threshold was identified

Fig. 2 Map of the study area showing the 100 sites included in this study. The map shows the site location in
reference to the pervious (forest, and shrub and grass) and impervious (built) surfaces within the city
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for northern red-legged frogs (180.3 days), where a strong and positive relationship
between HydroP and proportional occurrence was observed for hydroperiods longer than
the threshold (Fig. 4c). For500 had a negative, linear relationship with three of four
species (non-significant for northern red-legged frogs). Built200 had a negative and
significant linear relationship with Pacific chorus frogs and northern red-legged frogs. A
Built200 threshold was identified for northwestern salamanders (25.4 %) that marked a
transition from a negative to a roughly flat relationship (Fig. 4g). No significant
relationship was observed between Built200 and long-toed salamanders. Built1K had a
significant and negative relationship with northern red-legged frogs, and a threshold for
Built1K was identified for Pacific chorus frogs (30.2 %) at which point the relationship
transitioned from positive to negative (Fig. 4e). Age was only significantly related to one
species (long-toed salamanders) for which a threshold from negative to positive was
detected at 9.8 years (Fig. 4a). Finally, NonNatVeg was not significantly related to any
species.

Fig. 3 Two axes of a 2-dimensional nonmetricmultidimensional scaling (NMDS) are shown. a) All study sites shown
as gray points, and correlated environmental drivers (r≥ |0.3| for at least one axis) are shown as arrows. b through d)
Species proportional occupancies (number of years present / number years sampled) are coded by symbol size and
color. Sample sites are represented as hollow circles, and proportional occurrences are colored either gray or black
depending on species identity, shown in the panel legend. Completely full circles indicate sites where species were
present during all years of sampling effort. Alternatively, sites with only small colored circles indicate that species
occurrence for only one or a few years of sampling. Note that species with the same color across these three panels tend
to overlap in multivariate space
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Discussion

This study highlights local and landscape features that should be considered when
creating and maintaining aquatic amphibian habitat in the urban ecosystem. Increased
hydroperiod, water depth, impervious surfaces, non-native vegetation and forest patches
were identified as important localized habitat features that affect occurrence across
species. Hydroperiod and water depth are well known and widely recognized drivers
of amphibian communities (Snodgrass et al. 1999; Snodgrass et al. 2000; Babbitt 2005).
Our study shows this holds true of even highly modified environments despite the
effects of urbanization and the presence of stressors that may decouple amphibian
communities from their natural drivers. We stopped recording hydroperiod data on
July 15 of each year, preventing us from defining a threshold for minimum wetted days;
however, our data suggests that there is a positive correlation between all species and
sites that stay wet until at least early summer. The northern red-legged frog in particular
is often targeted for monitoring and conservation efforts, as it is listed by Oregon
Department of Fish and Wildlife as Bsensitive - vulnerable^, and in California and
British Columbia as a Bspecies of special concern^ due to declining populations. In
our study, the northern red-legged frog showed a threshold for hydroperiod at 180 days,
suggesting that northern red-legged frogs are found more often at sites that stay wet until
at least June 30 in a given year. Henning and Schiraton (2006) also found that hydro-
period affected northern red-legged frog presence where sites with Bintermediate
hydroperiods^ (7 month inundation) had the highest abundance. In northwest Oregon
and southwest Washington, northern red-legged frog eggs typically hatch late March-

Table 2 Relative variable importance calculated using multimodel inference with a generalized linear model
(GLM) with a binomial distribution with logit link

Northwestern salamander Long-toed
salamander

Pacific chorus frog Northern red-legged frog

Age 0.03, + 1.00, - 1.00, -

Built200 1.00, - 1.00, - 1.00, - 1.00, -

Built1K 0.14, + 1.00, + 1.00, + 0.04, -

Cover 0.42, + 0.04, +

Depth 1.00, +

Fish 0.24, + 0.24, - 0.04, -

FloatSubVeg 0.05, - 0.47, - 0.18, -

For500 0.96, - 0.59, - 0.16, - 0.26, -

For5K 0.07, + 0.22, - 0.21, -

HydroP 1.00, + 1.00, + 1.00, +

NonNatVeg 0.24, + 0.66, - 0.36, - 0.55, -

NearSite 0.43, -

NearStream 0.60, + 0.46, - 0.21, - 0.18, -

Models with delta Akaike’s Information Criterion (AIC) values < 2.0 were retained, and relative variable
importance values were summed across weights. Variables with no values indicate variables not included in
retained models. Correlations (negative or positive) are shown just after the relative variable importance (RVI)
value for each variable. Note that rough-skinned newts and American bullfrogs were not evaluated with GLMs
because percent absence was > 85 %
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early April and reach metamorphosis 11–14 weeks later (Storm 1960; Brown 1975).
Thus, management for this species should include providing breeding sites with a
hydroperiod extending until late June in order to maximize survival to the juvenile stage.

Maximum water depth was an important variable for long-toed salamanders, Pacific
chorus frogs, and northern red-legged frogs with each species showing a clear depth
preference at 40–60 cm. This is likely related to hydroperiod, temperature, and these
species’ ability to utilize ephemeral breeding ponds and metamorphose within one

Table 3 Results of threshold analysis from weighted linear and piecewise regression

Northwestern
salamander

Long-toed
salamander

Pacific
chorus frog

Northern
red-legged frog

Depth Adj. r-squared 0.37 0.81 0.59 0.8

β1 (SE) 0.04 (0.01) 0.10 (0.02) 0.10 (0.03) 0.08 (0.02)

β2 (SE) −0.08 (0.04) −0.10 (0.11) −0.10 (0.07)

ΨBIN (SE) 6.98 (0.63) 7.33 (1.11) 7.95 (0.63)

ΨORIG (SEest) 45.5 (8.1) 50.2 (15.0) 58.6 (8.5)

HydroP Adj. r-squared 0.57 0.79 0.80 0.99

β1 (SE) 0.02 (0.01) 0.06 (0.01) 0.07 (0.01) 0.01 (0.01)

β2 (SE) 0.32 (0.03)

ΨBIN (SE) 8.95 (0.12)

ΨORIG (SEest) 180.3 (1.8)

Age Adj. r-squared n.s. 0.59 n.s. n.s.

β1 (SE) −0.08 (0.03)

β2 (SE) 0.03 (0.01)

ΨBIN (SE) 4.6 (0.75)

ΨORIG (SEest) 9.8 (1.0)

NonNatVeg n.s. n.s. n.s. n.s.

Built200 Adj. r-squared 0.84 n.s. 0.47 0.42

β1 (SE) −0.19 (0.08) −0.03 (0.01) −0.03 (0.01)

β2 (SE) <0.01 (0.01)

ΨBIN (SE) 3.00 (0.66)

ΨORIG (SEest) 25.4 (3.7)

Built1K Adj. r-squared n.s. n.s. 0.64 0.36

β1 (SE) 0.10 (0.04) −0.03 (0.01)

β2 (SE) −0.03 (0.01)

ΨBIN (SE) 3.47 (0.56)

ΨORIG (SEest) 30.2 (1.7)

For500 Adj. r-squared 0.72 0.81 0.69 n.s.

β (SE) −0.02 (<0.01) −0.04 (0.01) −0.04 (0.01)

Models with a significant relationship (p < 0.05) are shown, and Bn.s.^ indicates non-significant modelling
results. Adjusted (Adj.) r-squared, slope (β) and standard error (SE) are presented for significant linear models.
Adjusted r-squared, slope pre-threshold (β1) and post-threshold (β2), standard error (SE), and threshold value of
explanatory variable bins (ΨBIN) and back-calculated to original predictor variable values (ΨORIG, in bold) as
well as standard error (exact for ΨBIN, estimated for ΨORIG) are included for models with significant support
for a threshold. In the case of a significant piecewise regression model, linear and piecewise regression models
were evaluated for model support with Akaike’s Information Criterion (AIC). Piecewise regression models were
retained when delta AIC> 2, indicating substantial support for the presence of a threshold
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Fig. 4 Plots of significant thresholds identified by species and environmental variable (Table 3). Bins of
environmental variables are shown on the x-axis, and species are identified on the y-axis (note that species are
constant across rows). Species proportional occurrences (averaged by bin) are shown as points. Piecewise linear
regression models and 95 % CIs are shown as solid and dashed lines, respectively
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season (Nussbaum et al. 1983; Leonard et al. 1993). These species were observed at
sites with depths that surpassed identified thresholds; however, at deep sites these
species tended to deposit eggs and congregate closer to the shallow site margins
(L.B. Guderyahn, pers. obs.). Pond margins are characterized by warmer water that
promotes faster development and microhabitats that serve as potential refuge from
predators (Bancroft et al. 2008). The northwestern salamander was the only native
species to show an association with permanent water. This species typically overwinters
at least once before metamorphosis (Watney 1941; Licht 1975) and several populations
containing neotenic individuals (Licht 1992) that require permanent water have been
found in Gresham (L. Guderyahn, unpublished data).

Additionally, we found two distinct groups of species driven largely by the
hydroperiod and depth of aquatic habitat. Pacific chorus frogs, long-toed salamanders,
and northern red-legged frogs were associated with ephemeral or intermittent sites,
whereas northwestern salamanders, rough-skinned newts, and American bullfrogs
showed a preference for perennial aquatic habitats. If promotion of species diversity
is a goal across the landscape, management should include providing a variety of
water depths and hydroperiods in order to increase the number of species likely to be
supported. Alternatively, if the goal of a habitat project is to promote the existence
and persistence of a specific species, such as the northern red-legged frog, a thorough
understanding of species-specific needs is required. Our results provide an important
first step in understanding how local and landscape factors affect amphibian diversity
in urbanized environments. However, additional research is needed to understand how
populations of sensitive species respond to management actions over time and across
space.

We also found that long-toed salamanders and Pacific chorus frogs showed moderate
negative correlations to fish. This is a pattern reported elsewhere in the Pacific North-
west (Monello and Wright 1999; Bull and Marx 2002; Pearl et al. 2005), and may be due
to a correlative effect such as the preference for ephemeral breeding sites and/or a direct
effect of predation or competition avoidance behavior (Skelly 1995; Wellborn et al.
1996). Similarly, we found positive correlations between fish presence and American
bullfrogs, northwestern salamanders and rough-skinned newts, and we suspect these
correlations are driven by a shared requirement for sites with permanent water.

The American bullfrog has long been hypothesized to have a negative effect on
populations of native amphibians, and studies have shown this relationship to be highly
complex and dependent upon a host of wetland characteristics such as food availability,
fish presence, and hydrologic regime (Kiesecker and Blaustein 1998; Adams 1999;
Kiesecker et al. 2002). In our study, American bullfrogs were only found at eleven of
the 100 sites. Furthermore, in five of those eleven sites, this species was found in only
one of multiple years of surveys, suggesting that their presence may currently be limited
in this urban study area. Studies that focus on the factors that affect and interact with
American bullfrog presence in urban areas are needed to better understand the distribu-
tion of bullfrogs across the urban landscape and their relationship with native amphibian
species.

In addition to modified habitat and invasive species, native amphibians in urban
environments also must cope with contaminants in breeding habitats. Stormwater ponds
in urban areas are built to collect, filter and treat high concentrations of metals, oils, and
road salts and these contaminants may have negative impacts on wildlife using the
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ponds (Gallagher et al. 2011, 2014; Hatch and Blaustein 2003; Van Meter et al. 2011; Le
Viol et al. 2012). While this study did not explore questions related to water chemistry,
the urban nature of our sites suggests some level of toxins are likely present. We found
no significant effect of habitat type (wetland vs water quality facility) on the presence of
any species. However, the number of occurrences for some species in our study was
small and may have limited our power to detect any significant preference for habitat
type. Additionally, contaminant levels may not differ significantly between manmade
versus naturally occurring breeding habitat in this study system. Thus, future work
might aim to explore the importance of toxicity relative to habitat variables in the
persistence of amphibians in urban environments.

Habitat connectivity and retention of forest habitat are also known to be important
considerations when locating ponds to support breeding amphibians (Guerry and
Hunter 2002; Semlitsch and Bodie 2003; Hayes et al. 2008). We found evidence that
both the amount of impervious surface within 200 m of a breeding site and the distance
to nearby forest patches had strong negative relationships with all species. For example,
northwestern salamanders decreased to virtually no occurrences in ponds with over
25 % built surface in a 200 m radius buffer. These findings are consistent with Homan
et al. (2004) who found significant thresholds for impervious cover for spotted sala-
manders and wood frogs at the 100 m–300 m spatial scale. Similarly, Ostergaard et al.
(2008) found percent forest cover within 200 m of a pond to be positively correlated
with northwestern salamanders and northern red-legged frogs. These findings suggest
that reducing impervious cover within relatively small buffers around breeding sites
and maintaining forest patches within that same buffer may have significant positive
effects on species persistence in the urban landscape.

Interestingly, our study showed that the negative relationship with the amount of
impervious cover within a 1000 m buffer was not strong for every species. The
northwestern salamander, the northern red-legged frog and the long-toed salamander
showed weak or insignificant relationships, and the Pacific chorus frog actually showed
a moderately strong positive relationship. One explanation could be an inability of
individuals to disperse among habitat patches in a fragmented urban landscape (Gibbs
1998; Parris 2006). Species may make disproportionate use of habitats closest to
breeding sites, and as a result, may be less sensitive to land cover changes within the
larger buffer. Sites located within riparian buffers or neighborhoods with a low pro-
portion of impervious surfaces may also offer greater opportunities for foraging,
overwintering and dispersal without individuals needing to make longer movements.
A note should be made that our study only captured the total percent impervious within
each buffer size, and did not include the spatial configuration of where that land cover
type exists within the buffer. It is possible that the habitat nearest to the pond in the
1000 m buffers may not have had significant impervious surface even if the outer
portions of the buffer zone did. Additional research is needed to look at movement and
habitat use in urban environments so that we can move beyond correlative studies.

Transitioning non-native vegetation to native plant communities has been shown to
improve habitat quality by increasing the number and ability of microhabitats to
support native amphibians and other fauna throughout all life stages (Vitousek et al.
1996; Marzluff and Ewing 2001). Our finding of negative associations between long-
toed salamanders, Pacific chorus frogs and northern red-legged frogs and the percent of
non-native vegetation within 10 m of a site’s edge may suggest an inability of non-
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native vegetation to fulfill the habitat requirements for these species. However, non-
native vegetation has also been correlated with sites that are more altered and have
higher human presence or influence in general (McKinney 2001). Therefore, the
negative correlations we found may be due to newly or highly disturbed or impacted
habitats rather than pointing to a lack of habitat value by non-native species specifi-
cally. One additional observation made during the study was that lawn grasses (i.e.
Kentucky bluegrass, ryegrass and fine fescue) were found to be very common around
many of our man-made sites. While developers, neighbors, or land managers in urban
areas may prefer lawn grass buffers around water quality facilities or protected wet-
lands for ease of maintenance and lawn aesthetic, the low profile of lawn grasses
provides little cover for amphibians migrating to and from breeding sites, and the
associated maintenance activities themselves may provide direct sources of mortality to
metamorphs and migrating adults (i.e. lawn mowers, moving vehicles, etc.; Hartup
1996). If grass is the preferred vegetation type around these facilities, efforts should be
made to allow grasses to grow taller to provide needed cover. In addition, precautions
should be taken to minimize direct mortality through altering the timing of mowing or
flushing adults and metamorphs from these areas before maintenance begins.

The dependence of species on upland habitat for foraging, overwintering, and connec-
tivity is well established (Nussbaum et al. 1983; Schuett-Hames 2004; Corkran and Thoms
2006; Hayes et al. 2008). Our study revealed a negative correlation between the distance to a
forest patch and occurrence of all species. Additionally, we found stronger negative
relationships between distances to small forest patch sizes (500 m2) than we did for the
distances to larger forest patch sizes (5000 m2). This suggests that nearby, small forest
patches are important habitat for species in an urban landscape. For example, the importance
of upland forested overwintering grounds for northern red-legged frogs has been the subject
of much research interest (Ritson and Hayes 2000; Schuett-Hames 2004; Hayes et al. 2008).
Although northern red-legged frogs can migrate several kilometers in an urban area (Hayes
et al. 2008), the resistance to movement presented by a highly developed landscape may be
too great to overcome (Mathias 2008). The average distance to a 500m2 forest patch for sites
in our study was 44 m, which may be sufficiently short to allow migration from a pond
through an urban landscape to forested upland. In contrast, the average distance to 5000 m2

forest patches was 225 m (up to 1869 m), which may be a more difficult distance to
overcome in an urban landscape. Mathias (2008) proposes a 200 ha (2,000,000 m2) mini-
mum forest patch size for northern red-legged frogs. However, forest patches of that size do
not exist in most urban landscapes. This lack of large forest patches combined with our
finding a positive association with forest patches as small as 50–500 m2 suggests that the
minimum patch size needed may be much smaller, providing an attainable goal for land
managers in urbanized environments. Forest patches with complex understory structure,
high levels of woody debris (Aubry and Hall 1991; Haggard 2000; Schuett-Hames 2004),
and a deep litter layer (Aubry 2000) are correlated with northern red-legged frog use,
suggesting that the characteristics of forest patches are an important consideration in
addition to size. Additional research to identify the size, shape and characteristics of forest
patches required by northern red-legged frogs in urban areas is important for the persistence
of this and other species.

Site age was correlated with the occurrence of Pacific chorus frogs and long-toed salaman-
ders, both of which showed an affinity for sites less than 5 years old. Both of these species tend
to be opportunistic breeders, with eggs and larvae often found in disturbed areas, such as
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newly formed (Leonard et al. 1993; Hamilton et al. 1998), recently disturbed (Corkran and
Thoms 2006), and human influenced (Beneski et al. 1986; Llewellyn and Peterson 1998;
Monello and Wright 1999) ponds. The trend found in our study may be a result of their ability
to quickly colonize newly created or recently disturbed sites.

In areas where less aquatic habitat exists and significant barriers to accessing habitat patches
occur, species are constrained to using the resources that are available to them and that best fit
their preferences. Land managers and city planners are addressing habitat needs of amphibians
and the impact of impervious surfaces through restoration, green infrastructure retrofits,
improving habitat corridors, and new development standards (e.g. City of Chicago 2006;
City of Seattle 2015). Reducing impervious cover around existing breeding sites as well as
protecting sites that are currently adjacent to forest patches may have significant positive
impacts on species occurrence. Additionally, restoration projects seeking to establish new
habitat should carefully consider restoration goals and should seek to balance species-specific
requirements with habitat characteristics beneficial to all wildlife. The results of this study are
an important step to understanding how to manage for amphibian biodiversity as well as
specific species requirements in urban areas. Additional research is required to add to our
understanding of the mechanisms at work in these relationships and the role that movement
corridors play in conserving urban amphibians.
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Appendix 1

Table 4 Data, details, resolution, and source information for spatial and environmental data used to analyze local
and landscape habitat variables

Data Source details Resolution Source

National Wetland
Inventory

Fish and Wildlife Service nation-
wide wetland inventory
shapefile

shapefile http://www.fws.gov/wetlands/
Data/State-Downloads.html

Local Wetland
Inventory

2003 Portland-METRO region
local wetland inventory

shapefile City of Gresham, GIS Division

Gresham Wetlands,
Ponds and Swales

Stormwater infrastructure facilities
built and maintained
within Grseham

shapefile City of Gresham, GIS Division

Urban Growth
Boundary Taxlots

METRO Regional Government:
Maps, Data and Research

shapefile http://www.oregonmetro.gov/index.
cfm/go/by.web/id/24876

2010 Aerial
Photography

METRO Regional Government:
Maps, Data and Research

shapefile http://www.oregonmetro.gov/index.
cfm/go/by.web/id/24876

Urban Growth
Boundary Land Use

METRO Regional Government:
Maps, Data and Research

shapefile http://www.oregonmetro.gov/index.
cfm/go/by.web/id/24876
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Appendix 2

Appendix 3

Table 5 Habitat associations of each species (WQF = manmade stormwater and/or flood control; Wetland =
naturally occurring wetland)

WQF Wetland Total

Species count % count % count

Long-toed salamander 39 76 12 24 51

Pacific chorus frog 45 78 13 22 58

Red-legged frog 30 83 6 17 36

Northwestern salamander 9 53 8 47 17

Rough-skinned newt 1 20 4 80 5

American bullfrog 8 73 3 27 11

The count of each habitat type for which a species was present at least once is shown as Bcount^ for each of the
two habitat types, and the percent of total occurrences for a species associated with each habitat type is also
shown. Note that of the 100 sites in this study, 79 were WQF and 21 were Wetland-type

Table 6 Results from Fisher’s Exact Test to compare observed (O) versus expected (E) occurrences for each
species in manmade versus natural wetland breeding sites

Species WQF Wetland Left Right 2-Tail

Long-toed salamander: O 39 12 0.50 0.68 1.00

Long-toed salamander: E 40 11

Pacific chorus frog: O 45 13 na

Pacific chorus frog: E 45 13

Red-legged frog: O 30 6 0.81 0.38 0.77

Red-legged frog: E 28 8

Northwestern salamander: O 9 8 0.14 0.96 0.28

Northwestern salamander: E 13 4

Rough-skinned newt: O 1 4 0.10 1.00 0.21

Rough-skinned newt: E 4 1

American bullfrog: O 8 3 0.50 0.84 1.00

American bullfrog: E 9 2

Expected values were calculated using the proportion of the two habitat types at which any amphibian was
observed multiplied by the total number of sites at which a species was observed. P-values are shown for two-
tailed, left (greater number of observations in wetlands than expected), and right (greater number of observations
in WQF sites than expected). For PSRE, observed and expected values were equal; thus, no test was performed
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