

# OCCURRENCE OF AMPHIBIANS IN SALINE HABITATS: A REVIEW AND EVOLUTIONARY PERSPECTIVE

Author(s): Gareth R. Hopkins and Edmund D. Brodie Jr Source: *Herpetological Monographs*, 2015, No. 29 (2015), pp. 1-27

Published by: Allen Press on behalf of the Herpetologists' League

Stable URL: https://www.jstor.org/stable/26358479

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms



Allen Press and Herpetologists' League are collaborating with JSTOR to digitize, preserve and extend access to Herpetological Monographs

## OCCURRENCE OF AMPHIBIANS IN SALINE HABITATS: A REVIEW AND EVOLUTIONARY PERSPECTIVE

GARETH R. HOPKINS<sup>1</sup> AND EDMUND D. BRODIE, JR

Department of Biology and the Ecology Center, Utah State University, Logan, UT 84322, USA

ABSTRACT: Amphibians are well known as osmotically sensitive organisms due to their highly permeable skin and eggs and, as such, biologists have mostly discounted their presence in saline environments. Yet, from the 1800s to the present day, scientists have repeatedly found amphibians living and breeding in a variety of saline coastal and inland habitats. Despite this plethora of observations, their presence in these habitats is still mostly ignored, and the last (and only) complete literature review documenting amphibians in brackish and saline habitats was completed over 50 yr ago. Here we provide a review of the literature of amphibians in saline waters and present data on 144 species, in 28 families, on every continent except Antarctica. In doing so, we make the case that salt tolerance in amphibians may not be as rare as generally assumed. Through classifying habitats and studies, we conclude that the abilities of dozens of species to locally adapt to coastal and inland saline habitats have been extensively studied, although more work on most observed species is still needed. Our understanding of the evolutionary processes leading to this adaptation is also in its infancy. We summarize the existing knowledge on this subject and present a possible framework toward the development of an evolutionary model of amphibian daptation to salt, based on genetic variation for salt tolerance in populations and the nature of selection events in osmotically stressful environments. Finally, we discuss some possible limitations on the ability of amphibians to tolerate salt water. Understanding the abilities and constraints of amphibian populations to adapt to salt will become more critical as humans continue to impact the world's freshwater resources through climate change, landscape modification, and pollution, and these habitats thus become increasingly stressful for amphibians.

Key words: Adaptation; Anura; Brackish; Caudata; Coastal; Frog; Road deicing salts; Salamander; Newt; Salt; Toad

"These animals and their spawn are immediately killed (with the exception as far as known, of one Indian species) by sea-water."

—Charles Darwin (1872)

FOR NEARLY as long as biologists have been aware of amphibian intolerance of salt water, they have been fascinated by exceptions to this rule. Thus, in discussing the general lack of amphibians on islands, Darwin (1872) amended his statement on amphibian intolerance of salt water in the 6th edition of Origin of the Species to include the parenthetical exception "...of one Indian species." "I may add," he wrote to Alfred Russel Wallace a few years later (probably referring to Fejervarya cancrivora), "that there is an Indian toad which can resist salt water and haunts the seaside" (Darwin 1876). While on the voyage of the Beagle in Port Desire, Patagonia, Argentina in January 1834, Darwin noted that a "Rana ... is bred in and inhabits water far too salt to drink" (Darwin 1834), a habitat Bell (1843) agreed was "remarkable" when identifying the frog as Leiuperus salarius (= Pleurodema bufoninum).

Since Darwin, countless other biologists and naturalists have found other frogs, toads, salamanders, and newts "haunting the seaside" and remarked on these fascinating exceptions to the rule of amphibian intolerance of salt water (Table 1). Neill (1958) compiled these anecdotes into his opus, "The occurrence of amphibians and reptiles in saltwater areas, and a bibliography." This paper is the only complete review of amphibians in saline habitats to date, and it includes mostly anecdotal notes of occurrence of amphibians in habitats impacted by salt water. At the time of its publication, very little work had been completed on amphibian osmoregulatory physiology, including the nowclassic work of Malcolm S. Gordon and colleagues (e.g., Gordon et al. 1961); very few of the species mentioned in Neill's publication had been tested for salt tolerance nor had the salinity of their habitats been measured. This pattern of what we would today call natural history notes makes up the bulk of the literature on amphibians and salinity, and it persisted as the norm from the 1800s to the early 1950s. Nevertheless, Neill's (1958) compilation of over 40 species of amphibians showing some evidence of salt tolerance provided the first glimpse that such tolerance may be more widespread than originally assumed.

In the 1960s and 1970s, Malcolm S. Gordon (e.g., Gordon et al. 1961), Uri Katz (e.g., Katz 1973), Ronald H. Alvarado (e.g., Alvarado and Moody 1970), and others completed seminal osmoregulatory physiology studies on amphibians and their ability to regulate salts. Much of this work focused on the physiological ability of the Asian Crab-eating Frog, Fejervarya (= Rana) cancrivora, and the European Green Toad, Bufotes (= Bufo) viridis (= balearicus) to inhabit coastal habitats with salinities approaching that of fullstrength seawater. Although many observers, including Darwin (1872), had long commented on the presence of these species in tidal mangroves, beaches, and in some cases actually in the sea, Gordon, Katz, and their colleagues demonstrated experimentally how these animals achieved this remarkable tolerance. Their elucidations of the mechanisms of urea hypersynthesis and retention and Na<sup>+</sup> and Cl<sup>-</sup> uptake to increase the osmolarity of the body fluids and plasma to be isotonic with the surrounding seawater (e.g., Gordon et al. 1961; Gordon 1962; Gordon and Tucker 1965, 1968; Katz 1973, 1975) are now considered classic works in amphibian physiology (reviewed by Balinsky 1981; Katz 1989; Shoemaker et al. 1992). This mechanism has since been discovered in other salt-tolerant species, e.g., Ambystoma tigrinum (Kirschner et al. 1971; Romspert and McClanahan 1981; Gasser and Miller 1986), Batrachoseps spp. (Jones and Hillman 1978), Rhinella marinus (Liggins and Grigg 1985), Epidalea calamita (Gomez-Mestre et al. 2004), and Pseudacris regilla (Weick 1980).

<sup>&</sup>lt;sup>1</sup> CORRESPONDENCE: e-mail, gareth.r.hopkins@gmail.com

2

| Gymnophiona<br>Typhlonectidae<br><i>Atretochoana eiselti</i> Adult<br>Caudata<br>Ambystomatidae | Life stage                                     | Habitat                                                                     | Location                        | Measured<br>salinity | Tested<br>tolerance | Field<br>observation | Lab<br>physiology | Paper type             | Reference                                                            |
|-------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|----------------------|---------------------|----------------------|-------------------|------------------------|----------------------------------------------------------------------|
|                                                                                                 |                                                | Tidal stream, tidal pool<br>(C/N)                                           | Brazil                          | No                   | No                  | Yes                  | No                | FA/NS                  | Hoogmoed et al. 2011                                                 |
|                                                                                                 | Adult, juvenile                                | Beach, under driftwood                                                      | USA                             | No                   | No                  | Yes                  | No                | SN/NHN                 | Hardy 1952                                                           |
| Eggs<br>Adult<br>Ambystoma opacum Adult                                                         | Eggs<br>Adults, eggs, larvae<br>Adults, larvae | Roadside pools (I/A)<br>Roadside pools (I/A)<br>Beach pools with salt spray | USA<br>USA<br>USA               | Yes<br>Yes<br>No     | Yes<br>Yes<br>No    | Yes<br>Yes<br>Yes    | No<br>No<br>No    | FA/S<br>FA/S<br>NHN/NS | Turtle 2000; Brady 2012<br>Karraker et al. 2008<br>Hardy 1972        |
| Ambystoma talpoideum Adult                                                                      | Adults, larvae                                 | (C/N)<br>Coastal wetland with storm                                         | USA                             | Yes                  | No                  | Yes                  | No                | FA/S                   | Gunzburger et al. 2010                                               |
| Ambystoma taylori Adult, ]<br>Ambystoma tigrinum Larvae                                         | Adult, larvae<br>Larvae                        | surge (C/N)<br>Saline lake (I/N)<br>Saline, alkaline pond                   | Mexico<br>USA                   | Yes<br>Yes           | Yes<br>Yes          | Yes<br>Yes           | No<br>Yes         | FA/NS<br>FA/S          | Taylor 1943; Brandon et al. 1981<br>Casser and Miller 1986           |
| Larv:<br>ad                                                                                     | Larvae/neotenic<br>adults                      | Saline lake (VN)                                                            | USA                             | Yes                  | No 2                | Yes                  | No S              | FA/S/NHN<br>/NS/FA/NS  | Young 1924; Larson 1968; Held<br>and Peterka 1974                    |
| Larve                                                                                           | Larvae/neotenic                                | Saline lake (I/N)                                                           | USA                             | Yes                  | No                  | Yes                  | Yes               | FA/S                   | Duerr and Ness 1970                                                  |
| Larvae<br>Larvae<br>Larvae                                                                      | le<br>se                                       | Saline lake (I/N)                                                           | Canada<br>USA<br>USA            | Yes<br>No<br>No      | No<br>Yes<br>Yes    | Yes<br>No<br>No      | No<br>Yes<br>Yes  | NHN/S<br>FA/S<br>FA/S  | Hammer 1986<br>Kirschner et al. 1971<br>Romsoert and McClanahan 1981 |
| Dicamptodon Larvae<br>tenebrosus                                                                | ie                                             | Tidal stream (C/N)                                                          | USA                             | No                   | No                  | Yes                  | No                | S/NHN                  | Ferguson 1956                                                        |
| Larvae                                                                                          | te                                             | Tidal stream (C/N)                                                          | USA                             | Yes                  | No                  | Yes                  | No                | S/NHN                  | Hopkins and Hopkins in press                                         |
| us                                                                                              | Adults, larvae                                 | Coastal wetland with storm<br>surge (C/N)                                   | USA                             | Yes                  | No                  | Yes                  | No                | FA/S                   | Gunzburger et al. 2010                                               |
| Plethodontidae<br>Batrachoseps gavilanensis Adults                                              | ţs                                             | Beach, under driftwood                                                      | USA                             | No                   | Yes                 | Yes                  | Yes               | FA/S                   | Licht et al. 1975                                                    |
| Batrachoseps pacificus Adults                                                                   | ts                                             | Beach, under driftwood                                                      | NSA                             | No                   | No                  | Yes                  | No                | FA/NS                  | Hansen et al. 2005                                                   |
| idigitata                                                                                       | Adults, larvae                                 | Coastal wetland with storm<br>surge (C/N)                                   | NSA                             | Yes                  | No                  | Yes                  | No                | FA/S                   | Gunzburger et al. 2010                                               |
| Salamandridae<br>Lissofriton helveticus Larvae<br>Adults                                        | ae<br>Is                                       | Brackish tidal pool (C/N)<br>Island pond with sea spray<br>(C/N)            | UK<br>UK                        | Yes<br>Yes           | No<br>No            | Yes<br>Yes           | No<br>No          | NHN/S<br>FA/NS         | Spurway 1943<br>Pyefinch 1937                                        |
| Adults                                                                                          | ts                                             | Coastal saline wetland                                                      | France                          | Yes                  | No                  | Yes                  | No                | FA/S                   | Thirion 2014                                                         |
| Lissotriton vulgaris Adult                                                                      | Adults, larvae, eggs                           | Brackish tidal pools<br>(C/N)                                               | UK                              | No                   | No                  | Yes                  | No                | S/NHN                  | Hardy 1943                                                           |
| Adults,<br>Adults                                                                               | Adults, eggs<br>Adults                         | Baltic Sea (C/N)<br>Saline lake (L/N)                                       | Sweden<br>Russia<br>(W Siharia) | No<br>Yes            | No<br>No            | Yes<br>Yes           | No<br>No          | NHN/S<br>FA/S          | Hagström 1981<br>Decksbach 1922                                      |
| Notophthalmus Adults                                                                            | ts                                             | Brackish water (I/N)                                                        | USA                             | No                   | No                  | Yes                  | No                | SN/NHN                 | Pawling 1939                                                         |
| Adults                                                                                          | ts                                             |                                                                             | NSA                             | No                   | No                  | No                   | Yes               | FA/S                   | Wittig and Brown 1977                                                |

Herpetological Monographs 29, 2015

| Species                                          | Life stage               | Habitat                                                              | Location                       | Measured<br>salinity  | Tested<br>tolerance | Field<br>observation | Lab<br>physiology | Paper type        | Reference                                                         |
|--------------------------------------------------|--------------------------|----------------------------------------------------------------------|--------------------------------|-----------------------|---------------------|----------------------|-------------------|-------------------|-------------------------------------------------------------------|
|                                                  | Adults, larvae           | Coastal wetland with storm                                           | USA                            | Yes                   | No                  | Yes                  | No                | FA/S              | Gunzburger et al. 2010                                            |
| Pleurodeles poireti                              | Adults                   | surge (U/N)<br>Brackish ponds, estuarine<br>marches (C/N)            | Algeria                        | No                    | No                  | Yes                  | No                | FA/NS             | Samraoui et al. 2012                                              |
| Salamandra salamandra                            | Adults                   | Semi-arid pools (I/N)                                                | Israel                         | No                    | Yes                 | Yes                  | Yes               | FA/S              | Degani 1981                                                       |
| I ancha granulosa                                | Adults<br>Adults         | Tidal stream (C/N)<br>Tidal stream (C/N)                             | USA                            | N0<br>Vec             | N0<br>N0            | Yes<br>Yes           | No<br>No          | S/NHN<br>S/NHN    | Ferguson 1956<br>Honkins and Honkins in mess                      |
|                                                  | Eggs, larvae             | Inland pond (I/A)                                                    | USA                            | No                    | Yes                 | No                   | No                | FA/S              | Hopkins et al. 2013b, 2014                                        |
| Triturus dobrogicus                              | Neotenic adult           | Saline soda pan (I/N)                                                | Hungary                        | Yes                   | No                  | Yes                  | No                | NHN/S             | Mester et al. 2013                                                |
| Tructus numeraus<br>Sirenidae<br>Siren lacertina | Adults                   | DIACKISH HIAISH (U/N)<br>Manprove swamp (C/N)                        | r rance<br>USA                 | Yes                   | on on               | Yes                  | on N              | r wo              | 111111011 2014<br>Boss and Chesnes 2014                           |
| Anura<br>Alytidae                                |                          | Ĩ                                                                    |                                |                       |                     |                      |                   |                   |                                                                   |
| Discoglossus galganoi<br>Discoalossus nictus     | Adults<br>Larvae         | Brackish water<br>Coastal saline lake hrackish                       | Spain<br>Morocco               | No<br>Yec             | o Z<br>Z            | Yes                  | No                | FA/NS<br>FA/NS    | Nöllert and Nöllert 1992<br>Fl Hamoumi et al 2007                 |
| Lougoon prins                                    | Lat vac                  | lagoon (C/N)                                                         | MOTOCOO                        | 501                   |                     | 61                   |                   | CNIAL             |                                                                   |
|                                                  | Larvae                   | Salt marshes, estuaries,<br>brackish ponds (C/N)                     | Tunisia,<br>Algeria,<br>France | Yes                   | Yes                 | Yes                  | No                | FA/NS             | Knoepfiller 1962                                                  |
| Discoglossus sardus                              | Larvae                   | Salt marshes, estuaries,<br>brackish ponds (C/N)                     | Tunisia,<br>Algeria,<br>France | Yes                   | Yes                 | Yes                  | No                | FA/NS             | Knoepfiller 1962                                                  |
| Bombinatoridae                                   |                          |                                                                      |                                |                       |                     |                      |                   |                   |                                                                   |
| Bombina variegata                                | Adults, larvae<br>Larvae | Brackish ditch (I/N)<br>Saline discharges/flows<br>(I/N)             | France<br>Germany              | Yes<br>No             | No<br>No            | Yes<br>Yes           | No<br>No          | TD/S<br>FA/NS     | Florentin 1899<br>Knoepfiller 1962                                |
| Bufonidae                                        |                          |                                                                      |                                |                       |                     |                      |                   |                   |                                                                   |
| Amietophrynus<br>mauritanicus                    | Adults, larvae           | Beach, stream on beach<br>(C/N)                                      | Algeria                        | No                    | No                  | Yes                  | No                | SN/NHN            | Bellairs and Shute 1954                                           |
|                                                  | Adults                   | Brackish pond (C/N)                                                  | Algeria                        | No<br>S               | No                  | Yes                  | No                | FA/NS             | Samraoui et al. 2012                                              |
| Anaxyrus americanus                              | Adults<br>Adults arre    | Tidal marsh (C/N)<br>Tidal marsh (C/N)                               | Canada<br>IIS A                | Yes<br>Var            | No                  | Yes<br>Vec           | o Z<br>Z Z        | FA/NS<br>NHN/S    | Uuellet et al. 2009<br>Viriot and Stanlaton 1082                  |
|                                                  | Adults, eggs, larvae     | Roadside wetlands (I/A)                                              | Canada                         | Yes                   | Yes                 | Yes                  | No                | FA/S              | Collins and Russell 2009                                          |
|                                                  | Larvae                   | Road deicing salt (I/A)                                              | USA                            | No                    | Yes                 | No                   | No                | FA/S              | Dougherty and Smith 2006                                          |
| -                                                | Eggs, larvae             | Road deicing salt (I/A)                                              | USA                            | No<br>No              | Yes                 | No                   | No                | FA/S              | Snodgrass et al. 2008                                             |
| Anaxyrus boreas                                  | Adults<br>Adults longo   | Soling hot mund Jobs (I/N)                                           | NSA<br>NSA                     | N0<br>V <sup>20</sup> | No                  | Yes<br>Voc           | No                | FA/NS             | Storer 1925<br>B 1030                                             |
|                                                  | Adults                   | Saline lake (IN)                                                     | USA                            | No No                 | No                  | Yes                  | No                | FA/NS             | Brues 1932                                                        |
| Anaxyrus fowleri                                 | Adults                   | Beach, beach ponds with<br>salt spray, coastal                       | USA                            | No                    | No                  | Yes                  | No                | FA/NHN/NS         | Wright and Wright 1938; Engels<br>1952; Hardy 1972                |
|                                                  |                          | islands, ocean (C/N)                                                 |                                |                       |                     | ÷                    |                   |                   |                                                                   |
| Anaxyrus quercicus                               | Adults, larvae           | beach, coastal islands,<br>coastal wetland with<br>storm surge (C/N) | USA                            | Yes                   | No                  | Yes                  | No                | FA/NS             | Engels 1952; Gunzburger et al.<br>2010                            |
| Anaxyrus terrestris                              | Adults, larvae           | Beach, coastal islands,<br>coastal wetland with                      | USA                            | Yes                   | No                  | Yes                  | No                | FA/NS/S/<br>NHN/S | Allen 1932; Smith and List 1955;<br>Neill 1958; Gunzburger et al. |
|                                                  | Larvae                   | Inland freshwater                                                    | USA                            | No                    | Yes                 | No                   | No                | FA/S              | Brown and Walls 2013                                              |
| Bufo bufo                                        | Adults, eggs             | Brackish pools (C/N)                                                 | UK                             | No                    | No                  | Yes                  | No                | S/NHN             | Hardy 1943                                                        |
|                                                  | Larvae                   | Freshwater pond (C/N)                                                | Italy                          | Yes                   | Yes                 | Yes                  | Yes               | FA/S              | Bernabò et al. 2013                                               |
|                                                  | Larvae<br>Larvae         | Brackish island pool (C/N)<br>Brackish ditch (I/N)                   | Norway<br>France               | Yes                   | o No                | Yes<br>Yes           | No<br>No          | NHN/S/CLL         | Hagström 1981<br>Florentin 1809                                   |
|                                                  |                          |                                                                      |                                |                       | >                   | ~~~                  | 2.4               | 2.22              |                                                                   |

3

| Species                                  | Life stage                                                 | Habitat                                                                                                                                                                | Location                                      | Measured<br>salinity    | Tested<br>tolerance | Field<br>observation            | Lab<br>physiology         | Paper type                         | Reference                                                                                                                                |
|------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|---------------------|---------------------------------|---------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Bufotes balearicus<br>Bufotes boulengeri | Larvae<br>Larvae                                           | Pond (C/N)<br>Coastal saline lake, brackish<br>Porron (C/N)                                                                                                            | Italy<br>Morocco                              | Yes<br>Yes              | Yes<br>No           | Yes<br>Yes                      | Yes<br>No                 | FA/S<br>FA/NS                      | Bernabò et al. 2013<br>El Hamoumi et al. 2007                                                                                            |
|                                          | Adults                                                     | Brackish water (C/N)                                                                                                                                                   | Algeria,<br>Egvot                             | No                      | No                  | Yes                             | No                        | FA/NS                              | Werner 1909                                                                                                                              |
| Bufotes variabilis                       | Adults<br>Adults                                           | Beach (C/N)<br>Shores of hypersaline lake (1/N)                                                                                                                        | Iran<br>Iran                                  | No<br>No                | No<br>No            | Yes<br>Yes                      | No<br>No                  | FA/NS<br>FA/NS                     | Schmidt 1955<br>Asem et al. 2014                                                                                                         |
| Bufotes viridis                          | Larvae<br>Adults                                           | Saline, muddy pools (I/N)<br>Brackish pools, ocean<br>(sound) (C/N)                                                                                                    | Austria<br>Sweden                             | No<br>Yes               | No<br>No            | Yes<br>Yes                      | No<br>No                  | FA/NS<br>FA/NS                     | Knoepfiler 1962<br>Gislén and Kauri 1959                                                                                                 |
|                                          | Adults                                                     |                                                                                                                                                                        | Belgium,<br>Yugoslavia,<br>Italv, Israel      | No                      | Yes                 | No                              | Yes                       | FA/S                               | Gordon 1962; Tercafs and<br>Schoffeniels 1962; Katz 1973,<br>1975                                                                        |
| Duttaphrynus<br>mel metrichus            | Adults, eggs<br>Adults, eggs<br>Adult                      | Baltic Sea (C/N)<br>Brackish water (C/N)<br>Brackish ponds/estuary<br>(C/N)                                                                                            | Sweden<br>Europe<br>India                     | No<br>No<br>Yes         | No<br>No<br>No      | Yes<br>Yes<br>Yes               | No<br>No<br>No            | NHN/S<br>FA/NS<br>FA/NS            | Mertens 1926; Hagström 1981<br>Boulenger 1897–1898<br>Annandale 1907                                                                     |
|                                          | Adult<br>Adult<br>Larvae<br>Adult                          | Salice Transpore swamp<br>(C/N)<br>Pond (C/N)<br>Pond (C/N)<br>Brackish margrove                                                                                       | Bangladesh<br>India<br>Hong Kong<br>Singapore | No<br>No<br>No          | No<br>Yes<br>No     | Yes<br>No<br>Yes                | No<br>Yes<br>No           | FA/NS<br>FA/S<br>FA/S<br>NHN/NS    | Rahman and Asaduzzaman 2010<br>Chakko 1968<br>Strahan 1957; Karraker et al. 2010<br>Chan and Goh 2010                                    |
| Epidalea calamita                        | Adults, eggs<br>Adults, eggs<br>Eggs, larvae               | wamp (C/N)<br>Brackish pools, tidal pools,<br>estuaries (C/N)<br>Baltic Sea (C/N)<br>Brackish beach pool                                                               | UK<br>Europe<br>UK                            | No<br>No<br>Yes         | No<br>No<br>Yes     | Yes<br>Yes<br>Yes               | No<br>No                  | FA/NS<br>FA/NHN/NS<br>FA/S         | Boulenger 1897–1898, 1920a;<br>Hardy 1943<br>Mertens 1926; Hagström 1981<br>Beebee 1985                                                  |
|                                          | Adults, eggs<br>Larvae<br>Larvae<br>Eggs, larvae, juvenile | (CN)<br>Ocean (bay) (C/N)<br>Saline pools on Frisian<br>Islands (CN)<br>Saline tidal marsh (CN)<br>Coastal saline wetlands, salt<br>marsh (C/N)<br>Brackish ponds (LN) | Sweden<br>Germany<br>France<br>Spain          | Yes<br>No<br>Yes<br>Yes | No<br>No<br>Yes     | Yes<br>Yes<br>Yes<br>Yes<br>Yes | o<br>NN<br>NN<br>NN<br>NN | FANS<br>FANS<br>FANS<br>FAS<br>FAS | Gislén and Kauri 1959<br>Knoepffler 1962<br>Knoepffler 1962<br>Thirion 2014<br>Gomez-Mestre and Tejedo 2003,<br>2004, 2005; Comez-Mestre |
| Incilius nebulifer<br>Incilius valliceps | Larvae<br>Eggs, larvae<br>Adults, eggs                     | Brackish ponds (I/N)<br>Ditch (C/N)<br>Brackish coastal salt<br>Marshes, wetlands<br>impacted by storm tides<br>(C/N)                                                  | Spain<br>USA<br>USA                           | Yes<br>No<br>No         | Yes<br>Yes<br>No    | Yes<br>No<br>Yes                | Yes<br>Yes<br>No          | FA/S<br>FA/S<br>FA/NS              | Gonez-Mestre et al. 2004<br>Alexander et al. 2012<br>Burger et al. 1949, Neill 1958;<br>Mueller 1985                                     |
| Peltophryne lemur                        | Adults, eggs<br>Adults                                     | Brackish pools (C/N)<br>Mangrove<br>swamps<br>(C/N)                                                                                                                    | Puerto Rico<br>British Virgin<br>Islands      | Yes<br>No               | No<br>No            | Yes<br>Yes                      | No<br>No                  | TD/NS<br>FA/NS                     | Matos-Torres 2006<br>Grant 1932                                                                                                          |
| Rhinella arenarum<br>Rhinella crucifer   | Adults, larvae<br>Larvae                                   | Brackish salt<br>flats stream<br>(1/N)<br>Brackish estuary (CN)                                                                                                        | Argentina<br>Brazil                           | Yes<br>Yes              | Yes<br>No           | Yes<br>Yes                      | Yes<br>No                 | FA/S<br>NHN/S                      | Ruibal 1962<br>Cuix and Lopes 1989                                                                                                       |
| interne of acidos                        |                                                            |                                                                                                                                                                        |                                               |                         |                     |                                 |                           |                                    | 1                                                                                                                                        |

| Species                                                | Life stage                               | Habitat                                                                     | Location                     | Measured<br>salinity | Tested<br>tolerance   | Field<br>observation | Lab<br>physiology | Paper type      | Reference                                                                        |
|--------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|------------------------------|----------------------|-----------------------|----------------------|-------------------|-----------------|----------------------------------------------------------------------------------|
| Rhinella dorbignyi                                     | Adults, eggs                             | Coastal lagoon with<br>artificially opened sand                             | Brazil                       | Yes                  | No                    | Yes                  | No                | FA/S            | Moreira et al. 2015                                                              |
| Rhinella marina                                        | Adults                                   | Brackish pools, beach,<br>manorroves (C/N)                                  | Australia                    | No                   | No                    | Yes                  | No                | FA/NS           | van Beurden and Grigg 1980                                                       |
|                                                        | Adults<br>Eggs, larvae                   |                                                                             | Australia<br>USA             | No<br>No             | Yes<br>Yes            | No<br>No             | Yes<br>No         | FA/S<br>NHN/S   | Liggins and Grigg 1985<br>Ely 1944                                               |
|                                                        | Adults, eggs, larvae                     | Temporal pools on beach                                                     | (Hawall)<br>Costa Rica       | No                   | No                    | Yes                  | No                | FA/NS           | Sasa et al. 2009                                                                 |
|                                                        | Adults, larvae                           | Saline mangroves, brackish                                                  | Puerto Rico                  | Yes                  | Yes                   | Yes                  | No                | FA/S            | Rios-López 2008                                                                  |
| Strauchbufo raddei                                     | Adult                                    | Beach, ocean (C/N)                                                          | China                        | No                   | No                    | Yes                  | No                | S/NHN           | Shaw 1934                                                                        |
| Ceratopurytuae<br>Chacophrys pierottii                 | Adults                                   | Brackish salt flats pools                                                   | Argentina                    | No                   | No                    | Yes                  | No                | FA/NS           | Cei 1955                                                                         |
| Lepidobatrachus asper                                  | Adults                                   | Brackish salt flats pools (I/N)                                             | Argentina                    | Yes                  | Yes                   | Yes                  | Yes               | FA/S            | Ruibal 1962                                                                      |
| Craugastoridae<br>Craugastor fitzingeri                | Adults                                   | Beach (C/N)                                                                 | Costa Rica                   | No                   | No                    | Yes                  | No                | FA/NS           | Sasa et al. 2009                                                                 |
| Cyciolanipinuae<br>Thoropa taophora                    | Adults, larvae                           | Intertidal zone of seashore                                                 | Brazil                       | No                   | No                    | Yes                  | No                | FA/NS           | Sazima 1971; Brasileiro et al. 2010                                              |
|                                                        | Adults                                   | (C/N)<br>Intertidal zone of seashore                                        | Brazil                       | No                   | No                    | Yes                  | Yes               | FA/S            | Abe and Bicudo 1991                                                              |
| Dandachatidae                                          | Adults, larvae                           | Rocky beach (C/N)                                                           | Brazil                       | No                   | No                    | Yes                  | No                | FA/NS           | Muralidhar et al. 2014                                                           |
| Denurobatuae<br>Hyloxalus littoralis<br>Dismorlossidae | Adults                                   | Pond on beach (C/N)                                                         | Peru                         | No                   | No                    | Yes                  | No                | FA/NS           | Péfaur 1984                                                                      |
| Euphlyctis cyanophlyctis                               | Adult                                    | Brackish ponds/estuary                                                      | India                        | Yes                  | No                    | Yes                  | No                | FA/NS           | Annandale 1907                                                                   |
|                                                        | Adult<br>Adults                          | Pond (C/N)<br>Tidal mangrove swamp<br>(C/N)                                 | India<br>India,<br>Bandodach | No<br>No             | $_{\rm No}^{\rm Yes}$ | No<br>Yes            | Yes<br>No         | FA/S<br>FA/NS   | Chakko 1968<br>Rahman and Asaduzzaman 2010;<br>Taras at al 2019.                 |
| Euphlyctis hexadactylus                                | Adults                                   | Tidal mangrove swamp                                                        | bangladesn<br>India          | No                   | No                    | Yes                  | No                | FA/NS           | Jena et al. 2013<br>Jena et al. 2013                                             |
| Fejervarya cancrivora                                  | Adults                                   | Tidal mangrove swamp<br>(C/N)                                               | India                        | No                   | No                    | Yes                  | No                | FA/NS           | Satheeshkumar 2011; Jena et al.<br>2013                                          |
|                                                        | Adults                                   | Tidal stream, mangrove<br>forest (C/N)                                      | Myanmar                      | No                   | No                    | Yes                  | No                | FA/NS           | Wogan et al. 2008                                                                |
|                                                        | Adults                                   | Beach, ocean (C/N)                                                          | South Asia                   | No                   | No                    | Yes                  | No                | FA/NS           | Boulenger 1920b                                                                  |
|                                                        | Adults<br>Adults                         | Brackish pools (U/N)<br>Brackish water mangrove                             | r nuppines<br>Singapore      | No<br>No             | No<br>No              | Yes<br>Yes           | No                | FA/NS<br>NHN/NS | Alcala 1962<br>Chan and Goh 2010                                                 |
|                                                        | Larvae                                   | swamps (C/N)<br>Intertidal zone on beach,                                   | Philippines                  | Yes                  | No                    | Yes                  | No                | S/NHN           | Pearse 1911                                                                      |
|                                                        | Larvae                                   | Mangrove tidal pools (C/N)                                                  | -                            | Yes                  | Yes                   | Yes                  | No                | NHN/S           | Dunson 1977                                                                      |
|                                                        | Adults, eggs, larvae<br>Larvae<br>Adults | Mangrove swamps (C/N)<br>Mangrove tidal pools (C/N)<br>Mangrove summe (C/N) | Thailand<br>Thailand         | Yes<br>Ves           | Yes<br>Ves            | res<br>Yes<br>Voc    | Yes<br>Vor        | FA/S<br>FA/S    | Contyama et al. 1990<br>Gordon and Tucker 1965<br>Cordon of al. 1061. Condon and |
|                                                        | sumny                                    | Maligrove swallips (2014)                                                   | TIMIM                        | 621                  | ß                     | 162                  | 61                | L'AUS           | Tucker 1968                                                                      |
|                                                        | Adults                                   | Brackish water at estuary<br>mouth (C/N)                                    | Thailand                     | No                   | No                    | Yes                  | No                | FA/NS           | Smith 1927                                                                       |

HOPKINS AND BRODIE—AMPHIBIANS IN SALINE HABITATS

This content downloaded from 198.162.22.40 on Thu, 12 Aug 2021 20:26:21 UTC All use subject to https://about.jstor.org/terms  $\mathbf{5}$ 

| Species                                                          | Life stage                         | Habitat                                                                                      | Location                             | Measured<br>salinity               | <b>Tested</b><br>tolerance | Field<br>observation | Lab<br>physiology | Paper type              | Reference                                                                        |
|------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|----------------------------|----------------------|-------------------|-------------------------|----------------------------------------------------------------------------------|
| Fejervarya limnocharis                                           | Adults<br>Adult                    | Mangrove tidal pools (C/N)<br>Brackish tidal streams<br>(C/N1)                               | Indonesia<br>Southeast Asia          | $\mathop{\rm Yes}\limits_{\rm No}$ | Yes<br>No                  | Yes<br>Yes           | Yes<br>No         | FA/S<br>FA/NS           | Wygoda et al. 2011<br>Boulenger 1912                                             |
|                                                                  | Larvae                             | Brackish island tide pools<br>(C/N)                                                          | Taiwan                               | Yes                                | Yes                        | Yes                  | Yes               | FA/S                    | Wu and Kam 2009; Wu et al. 2012                                                  |
| Fejervarya moodiei                                               | Larvae<br>Larvae<br>Adults, larvae | Ponds (C/N)<br>Freshwater ditch (C/N)<br>Beach, crab burrows in<br>intertidal zone, brackish | Hong Kong<br>Thailand<br>Philippines | No<br>Yes<br>No                    | Yes<br>Yes<br>No           | No<br>No<br>Yes      | No<br>Yes<br>No   | FA/S<br>FA/S<br>FA/S/NS | Karraker et al. 2010<br>Gordon and Tucker 1965<br>Taylor 1943; Brown et al. 2013 |
| Fejervarya orissaensis                                           | Adults                             | Tidal mangrove swamp                                                                         | India                                | No                                 | No                         | Yes                  | No                | FA/NS                   | Jena et al. 2013                                                                 |
| Hoplobatrachus crassus                                           | Adults                             | Tidal mangrove swamp                                                                         | India                                | No                                 | No                         | Yes                  | No                | FA/NS                   | Jena et al. 2013                                                                 |
| Fejervarya rugulosus                                             | Adults                             | Tidal irrigation ditches                                                                     | Malaysia                             | Yes                                | Yes                        | Yes                  | No                | FA/S                    | Davenport and Huat 1997                                                          |
| Fejervarya tigerinus                                             | Adult                              | Brackish ponds/estuary<br>(C/N)                                                              | India                                | Yes                                | No                         | Yes                  | No                | FA/NS                   | Annandale 1907                                                                   |
|                                                                  | Adult<br>Adults                    | Tidal mangrove swamp                                                                         | Vietnam<br>India                     | No<br>No                           | Yes<br>No                  | No<br>Yes            | Yes<br>No         | FA/S<br>FA/NS           | Gordon et al. 1961<br>Jena et al. 2013                                           |
| Zakerana syhadrensis                                             | Adults                             | Tidal mangrove swamp<br>(C/N)                                                                | India                                | No                                 | No                         | Yes                  | No                | FA/NS                   | Jena et al. 2013                                                                 |
| Eleutherodactylidae<br>Eleutherodactylus caribe                  | Adults                             | Coastal mangroves<br>(C/N)                                                                   | Haiti                                | No                                 | No                         | Yes                  | No                | FA/NS                   | Hedges and Thomas 1992                                                           |
| Eleutherodactylus coqui                                          | Adults                             | Brackish swamp/forest                                                                        | Puerto Rico                          | Yes                                | No                         | Yes                  | No                | FA/S                    | Rios-López 2008                                                                  |
| Eleutherodactylus<br>jamaicensis                                 | Adults                             | Supratidal area of beach,<br>under coconut husks<br>(C/N)                                    | Jamaica                              | No                                 | No                         | Yes                  | No                | SN/NHN                  | Grant 1939                                                                       |
| Eleutherodactylus luteolus<br>Eleutherodactylus<br>martinicensis | Adults<br>Adults                   | Beach (C/N)<br>Beach (C/N)                                                                   | Jamaica<br>Antigua                   | No<br>No                           | No<br>No                   | Yes<br>Yes           | No<br>No          | FA/NS<br>NHN/NS         | Goin 1953<br>Lynn 1957                                                           |
| Eleutherodactylus<br>planirostris<br>Hvlidae                     | Adults                             | Stones/beach at edge of<br>Ocean (C/N)                                                       | NSA                                  | No                                 | No                         | Yes                  | No                | S/NHN                   | Neill 1958                                                                       |
| Acris crepitans                                                  | Adults, larvae                     | Beach ponds with salt spray (C/N)                                                            | USA                                  | No                                 | No                         | Yes                  | No                | SN/NHN                  | Hardy 1972                                                                       |
| Acris gryllus                                                    | Adults, larvae                     | Coastal marsh with storm<br>surge, brackish pools on<br>sand dunes near ocean<br>(CNN)       | USA                                  | Yes                                | No                         | Yes                  | No                | FA/NS/S                 | Burger et al. 1949; Neill 1958;<br>Gunzburger et al. 2010                        |
| Aparasphenodon<br>hokermanni                                     | Adults                             | Brackish tidal river (C/N)                                                                   | Brazil                               | No                                 | No                         | Yes                  | No                | FA/NS                   | Pombal 1993                                                                      |
| Dendropsophus<br>microcenhalus                                   | Adults                             | Mangroves (C/N)                                                                              | Colombia                             | No                                 | No                         | Yes                  | No                | SN/NHN                  | Alvarez-León and De Ayala-<br>Monedero 2000                                      |
| Hyla cinerea                                                     | Adults                             | Brackish pools in coastal<br>salt marsh (C/N)                                                | USA                                  | No                                 | No                         | Yes                  | No                | FA/NS/NHN/S             | Burger et al. 1949; Neill 1958                                                   |
|                                                                  | Adults                             | Ponds subject to salt spray<br>from Chesapeake Bay<br>(C/N)                                  | USA                                  | Yes                                | No                         | Yes                  | No                | FA/NS                   | Hardy 1953                                                                       |

This content downloaded from 198.162.22.40 on Thu, 12 Aug 2021 20:26:21 UTC All use subject to https://about.jstor.org/terms

| led.  |
|-------|
| ntin  |
| Ŭ     |
| 1     |
| TABLE |

| Species                                                  | Life stage                                       | Habitat                                                                                | Location                   | Measured<br>salinity | Tested<br>tolerance | Field<br>observation | Lab<br>physiology  | Paper type                      | Reference                                                                                                  |
|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------|----------------------|---------------------|----------------------|--------------------|---------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                          | Adults, eggs                                     | Brackish pool (C/N)                                                                    | USA                        | No<br>No             | No                  | Yes                  | No<br>No           | SN/NHN                          | Peterson et al. 1952                                                                                       |
|                                                          | Larvae<br>Adults, larvae                         | Bay (C/N)<br>Coastal wetland with storm                                                | USA                        | Yes<br>Yes           | N0<br>N0            | Yes<br>Yes           | No<br>No           | NHN/S<br>FA/S                   | Diener 1965<br>Gunzburger et al. 2010                                                                      |
|                                                          | Larvae                                           | surge (C/N)<br>Inland freshwater pond                                                  | USA                        | No                   | Yes                 | No                   | No                 | FA/S                            | Brown and Walls 2013                                                                                       |
| Hula femoralis                                           | Adults larvae                                    | (I/N)<br>Coastal wetland with storm                                                    | 11SA                       | Vac                  | No                  | Vac                  | N                  | FA/S                            | Cunrhurder et al 9010                                                                                      |
| Hula araticea                                            | Adulte larvae                                    | Surge (C/N)<br>Coast-al watland with storm                                             | 11CA                       | Not V                |                     | Acc 1                |                    | 0 V 10                          | Currburger et al. 2010                                                                                     |
| night Brunst                                             | 1100 101 101 100 100 100 100 100 100 10          | surge (C/N)                                                                            | VCO                        | 51                   |                     | 6                    |                    | C W J                           | Cultabuiger et al. 2010                                                                                    |
| Hyla meridionalis                                        | Adults<br>Larvae                                 | Brackish pond (C/N)<br>Coastal saline wetlands, salt                                   | Algeria<br>France          | No<br>Yes            | No<br>No            | Yes<br>Yes           | No<br>No           | FA/NS<br>FA/S                   | Samraoui et al. 2012<br>Thirion 2014                                                                       |
| Hyla sarda<br>Hyla savignyi                              | Adults<br>Adults                                 | Brackish ponds (C/N)<br>Brackish ponds (C/N)<br>Shores of hypersaline lake             | Europe<br>Iran             | No<br>No             | No<br>No            | Yes<br>Yes           | No<br>No           | FA/NS<br>FA/NS                  | Nöllert and Nöllert 1992<br>Asem et al. 2014                                                               |
| Hyla versicolor                                          | Adults                                           | (UN)<br>Beach, pools affected by sea                                                   | NSA                        | No                   | No                  | Yes                  | No                 | FA/NS/NHN/S                     | Viosca 1923; Neill 1958                                                                                    |
|                                                          | Larvae                                           | spray (UN)<br>Road deicing salts (I/A)                                                 | NSA                        | No                   | Yes                 | No                   | No                 | FA/S                            | Chambers 2011; Van Meter and                                                                               |
| Hypsiboas geographicus<br>Hypsiboas pulchellus           | Larvae<br>Adults                                 | Brackish estuary (C/N)<br>Coastal lagoon with<br>artificially opened sand              | Brazil<br>Brazil           | Yes<br>Yes           | No<br>No            | Yes<br>Yes           | No<br>No           | NHN/S<br>FA/S                   | owali 2014<br>Guix and Lopes 1989<br>Moreira et al. 2015                                                   |
| Litoria aurea                                            | Larvae                                           | bar (C/N/A)<br>Fresh and brackish<br>(secondary salinization)<br>weehond (1/A)         | Australia                  | Yes                  | Yes                 | Yes                  | No                 | FA/S                            | Christy and Dickman 2002;<br>Kearney et al. 2012                                                           |
|                                                          | Adults, larvae<br>Adults, larvae                 | Brackish estuary (C/N)<br>Ponds adjacent to ocean                                      | Australia<br>Australia     | Yes<br>Yes           | No<br>No            | Yes<br>Yes           | No<br>No           | FA/S<br>FA/NS                   | Hamer et al. 2002<br>Pyke et al. 2002, 2013                                                                |
| Litoria caerulea                                         | Adults, larvae                                   | Pond adjacent to coastal                                                               | Australia                  | Yes                  | No                  | Yes                  | No                 | FA/NS                           | Pyke et al. 2002                                                                                           |
| Litoria cyclorhyncha<br>Litoria dentata                  | Adults, larvae<br>Adults, larvae                 | agout (C/N)<br>Saline creek (I/N/A)<br>Pond adjacent to coastal                        | Australia<br>Australia     | Yes<br>Yes           | No<br>No            | Yes<br>Yes           | No<br>No           | NHN/S<br>FA/NS                  | Janicke and Roberts 2010<br>Pyke et al. 2002                                                               |
| Litoria peronii                                          | Adults, larvae                                   | lagoon (U/N)<br>Pond adjacent to coastal                                               | Australia                  | Yes                  | No                  | Yes                  | No                 | FA/NS                           | Pyke et al. 2002                                                                                           |
| Litoria tyleri                                           | Adults, larvae                                   | Pond adjacent to coastal<br>lagrom (C/N)                                               | Australia                  | Yes                  | No                  | Yes                  | No                 | FA/NS                           | Pyke et al. 2002                                                                                           |
| Osteopilus pulchritineatus<br>Osteopilus septentrionalis | Adults<br>Adults, eggs<br>Adults<br>Larvae       | Coastal mangroves (C/N)<br>Brackish pool (C/N)<br>Mangroves (C/N)<br>Inland freshwater | Haiti<br>USA<br>USA<br>USA | N<br>NO<br>NO<br>NO  | No<br>No<br>Yes     | Yes<br>Yes<br>No     | o o o o<br>X X X X | FA/NS<br>NHN/S<br>FA/NS<br>FA/S | Hedges and Thomas 1992<br>Peterson et al. 1952; Neill 1958<br>Glorioso et al. 2013<br>Brown and Walls 2013 |
| Pseudacris clarkii                                       | Adults                                           | Salt marshes very close to ocean (with crahs) (C/N)                                    | USA                        | No                   | No                  | Yes                  | No                 | FANS                            | Smith and Sanders 1952                                                                                     |
| Pseudacris crucifer                                      | Adults<br>Adults, eggs, larvae<br>Adults, larvae | Tidal marsh (C/N)<br>Roadside wetlands (I/A)<br>Beach ponds with salt spray<br>(C/N)   | Canada<br>Canada<br>USA    | Yes<br>Yes<br>No     | No<br>Yes<br>No     | Yes<br>Yes<br>Yes    | No<br>No<br>No     | FA/NS<br>FA/S<br>NHN/NS         | Ouellet et al. 2009<br>Collins and Russell 2009<br>Hardy 1972                                              |
| Pseudacris maculata<br>Pseudacris nigrita                | Adults<br>Adults, larvae                         | Tidal marsh (C/N)<br>Coastal wetland with storm<br>surge (C/N)                         | Canada<br>USA              | Yes<br>Yes           | No<br>No            | Yes<br>Yes           | No                 | FA/S<br>FA/S                    | Ouellet et al. 2009<br>Gunzburger et al. 2010                                                              |

### HOPKINS AND BRODIE—AMPHIBIANS IN SALINE HABITATS

7

| 1Continued. |  |
|-------------|--|
| TABLE       |  |

| Species                                                                               | Life stage                                   | Habitat                                                                                       | Location                         | Measured<br>salinity | Tested<br>tolerance | Field<br>observation | Lab<br>physiology | Paper type               | Reference                                                         |
|---------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|----------------------|---------------------|----------------------|-------------------|--------------------------|-------------------------------------------------------------------|
| Pseudacris ocularis                                                                   | Adults, larvae                               | Coastal wetland with storm                                                                    | USA                              | Yes                  | No                  | Yes                  | No                | FA/S                     | Cunzburger et al. 2010                                            |
| Pseudacris regilla                                                                    | Adults<br>Adults, larvae, eggs               | surge (C/N)<br>Saline island pools (C/N)<br>Beach and cliff pools in<br>spray zone, near tide | USA<br>USA                       | No<br>Yes            | No<br>Yes           | Yes<br>Yes           | No<br>Yes         | NHN/NS<br>TD/S           | Murray 1955<br>Roberts 1970                                       |
|                                                                                       | Adults<br>Adults                             | mark (C/N)<br>Saline hot spring (I/N)<br>Brackish oceanic bay and                             | USA<br>USA                       | Yes<br>Yes           | No<br>Yes           | Yes<br>Yes           | No<br>Yes         | FA/NS<br>TD/S            | Brues 1932<br>Weick 1980                                          |
|                                                                                       | Adults, eggs, larvae                         | ary                                                                                           | NSA                              | Yes                  | No                  | Yes                  | No                | FA/S                     | Smith and Reis 1997                                               |
| Pseudis paradoxa                                                                      | Adults, juveniles                            | Mangroves, saline swamp,                                                                      | Trinidad                         | No                   | No                  | Yes                  | No                | FA/NS                    | Downie et al. 2010                                                |
| Scinax ruber                                                                          | Adults                                       | Mangroves (C/N)                                                                               | Colombia                         | No                   | No                  | Yes                  | No                | SN/NHN                   | Alvarez-León and De Ayala-<br>Monedero 2000                       |
| Scinax squalirostris                                                                  | Adults                                       | Coastal lagoon with<br>artificially opened sand<br>hor (CNIA)                                 | Brazil                           | Yes                  | No                  | Yes                  | No                | FA/S                     | Moreira et al. 2015                                               |
| Smilisca baudinii<br>Trachycephalus typhonius<br>Lentodochlidae                       | Adults, eggs, larvae<br>Adults, eggs, larvae | Mangroves (C/N)<br>Mangroves (C/N)                                                            | Costa Rica<br>Costa Rica         | No<br>No             | No<br>No            | Yes<br>Yes           | No<br>No          | FA/NS<br>FA/NS           | Sasa et al. 2009<br>Sasa et al. 2009                              |
| Leptodactylus albilabris                                                              | Adults, larvae                               | Brackish swamp/forest (C/N)                                                                   | Puerto Rico                      | Yes                  | Yes                 | Yes                  | No                | FA/S                     | Rios-López 2008                                                   |
| Leptodactylus gracilis                                                                | Adults                                       | Coastal lagoon with<br>artificially opened sand<br>bar (CNVA)                                 | Brazil                           | Yes                  | No                  | Yes                  | No                | FA/S                     | Moreira et al. 2015                                               |
| Leptodactylus latrans                                                                 | Adults                                       | Crab burrows in mangrove<br>swamps (C/N)                                                      | Brazil                           | No                   | No                  | Yes                  | No                | S/NHN                    | Ferreira and Tonini 2010                                          |
|                                                                                       | Adults                                       | Coastal lagoon with<br>artificially opened sand<br>bar (CN/A)                                 | Brazil                           | Yes                  | No                  | Yes                  | No                | FA/S                     | Moreira et al. 2015                                               |
| Leptodactylus<br>macrosternum                                                         | Adults                                       | Mangrove swamp (C/N)                                                                          | Brazil                           | Yes                  | No                  | Yes                  | No                | NHN/NBN                  | Andrade et al. 2012                                               |
| Leptodactylus melanonotus<br>Leptodactylus nesiotus<br>Leptodactylus<br>nentadactylus | Adults, eggs, larvae<br>Adults<br>Adults     | Ponds on beach (C/N)<br>Brackish swamp (C/N)<br>Mangrove swamp (C/N)                          | Costa Rica<br>Trinidad<br>Guyana | N0<br>N0<br>N0       | No<br>No            | Yes<br>Yes<br>Yes    | No<br>No<br>No    | FA/NS<br>FA/NS<br>NHN/NS | Sasa et al. 2009<br>Ponssa et al. 2010<br>Crawford and Jones 1933 |
| Physalaemus biligonigerus                                                             | Adults                                       | Coastal lagoon with<br>artificially opened sand<br>bar (CNVA)                                 | Brazil                           | Yes                  | No                  | Yes                  | No                | FA/S                     | Moreira et al. 2015                                               |
| Physalaemus gracilis                                                                  | Adults                                       | Coastal lagoon with<br>artificially opened sand<br>har (C/N/A)                                | Brazil                           | Yes                  | No                  | Yes                  | No                | FA/S                     | Moreira et al. 2015                                               |
| Physalaemus henselii                                                                  | Adults                                       | Coastal lagoon with<br>artificially opened sand<br>bar (CN/A)                                 | Brazil                           | Yes                  | No                  | Yes                  | No                | FA/S                     | Moreira et al. 2015                                               |
| Pleurodema bufoninum<br>Pleurodema nebulosum                                          | Adults, eggs<br>Adults                       | Salt water (C/N)<br>Brackish salt flats pools<br>(UN)                                         | Argentina<br>Argentina           | No<br>Yes            | No<br>Yes           | Yes<br>Yes           | No<br>Yes         | NHN/NS<br>FA/S           | Darwin 1834; Bell 1843<br>Ruibal 1962                             |
| Limnodynastidae<br>Limnodynastes dumerili                                             | Larvae                                       | Saline wetlands/secondary<br>salinization (I/A)                                               | Australia                        | Yes                  | No                  | Yes                  | No                | FA/S                     | Smith et al. 2007                                                 |

| Species                                           | Life stage                         | Habitat                                                                                        | Location                            | Measured<br>salinity | Tested<br>tolerance                                  | Field<br>observation | Lab<br>physiology | Paper type              | Reference                                                                 |
|---------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------|----------------------|------------------------------------------------------|----------------------|-------------------|-------------------------|---------------------------------------------------------------------------|
| Limnodynastes peronii                             | Larvae                             | Saline wetlands/secondary<br>salinization (I/A)                                                | Australia                           | Yes                  | No                                                   | Yes                  | No                | FA/S                    | Smith et al. 2007                                                         |
|                                                   | Adults, larvae                     | Pond adjacent to coastal<br>lagoon (C/N)                                                       | Australia                           | Yes                  | No                                                   | Yes                  | No                | FA/NS                   | Pyke et al. 2002                                                          |
| Limnodynastes<br>tasmaniensis                     | Larvae                             | Saline wetlands/secondary<br>salinization (I/A)                                                | Australia                           | Yes                  | No                                                   | Yes                  | No                | FA/S                    | Smith et al. 2007                                                         |
| Neobatrachus sudelli                              | Larvae                             | Saline wetlands/secondary salinization (I/A)                                                   | Australia                           | Yes                  | No                                                   | Yes                  | No                | FA/S                    | Smith et al. 2007                                                         |
| Microhylidae<br>Gastrophryne carolinensis         | Adults, eggs                       | Ponds subject to salt spray<br>from Chesapeake Bay<br>(CN)                                     | USA                                 | Yes                  | No                                                   | Yes                  | No                | FA/NS                   | Hardy 1953                                                                |
|                                                   | Adults, eggs                       | Brackish water Florida Keys<br>(C/N)                                                           | USA                                 | No                   | No                                                   | Yes                  | No                | SN/NHN                  | Peterson et al. 1952                                                      |
|                                                   | Adults                             | Beach, brackish water near<br>beach, salt marsh (C/N)                                          | USA                                 | No                   | No                                                   | Yes                  | No                | FA/NS                   | Viosca 1923; Neill 1958                                                   |
| Glyphoglossus molossus<br>Mvohatrachidae          | Larvae<br>Adults                   | Inland freshwater<br>Tidal portion of delta (C/N)                                              | USA<br>Myanmar                      | No<br>No             | Yes<br>No                                            | No<br>Yes            | No<br>No          | FA/S<br>FA/NS           | Brown and Walls 2013<br>Theobald 1868                                     |
| Crinia riparia<br>Crinia signifera                | Adults<br>Adults<br>Larvae         | Saline creek ( <i>UN</i> )<br>Saline creek ( <i>UN</i> )<br>Brackish tide pools ( <i>C/N</i> ) | Australia<br>Australia<br>Australia | Yes<br>Yes<br>No     | No<br>No                                             | Yes<br>Yes<br>Yes    | No<br>No          | FA/NS<br>FA/NS<br>FA/NS | Odendaal and Bull 1982<br>Odendaal and Bull 1982<br>Mokany and Shine 2003 |
| Odontophrynus maisuma<br>Odontophrynus maisuma    | Adults, eggs                       | Coastal lagoon with<br>artificially opened sand<br>bar (C/N/A)                                 | Brazil                              | Yes                  | No                                                   | Yes                  | No                | FA/S                    | Moreira et al. 2015                                                       |
| r elobatidae<br>Pelobates cultripes               | Larvae                             | Coastal saline wetlands, lagoons, and salt marshes $(C(N))$                                    | France                              | Yes                  | No                                                   | Yes                  | No                | FA/S                    | Thirion 2014                                                              |
|                                                   | Adults                             | Control<br>Coastal wetlands with<br>tsunami storm surge<br>(C/N)                               | France                              | Yes                  | No                                                   | Yes                  | No                | FA/S                    | Thirion 2002                                                              |
| Pelobates fuscus                                  | Eggs<br>Eggs, larvae               | Coastal wetlands (C/N)<br>Inland pond polluted with<br>road deicing salts (I/A)                | France<br>Romania                   | No<br>Yes            | Yes<br>Yes                                           | No<br>Yes            | No<br>No          | TD/NS<br>FA/S           | Thirion 2006<br>Stanescu et al. 2013                                      |
| Pelodytidae<br>Pelodytes punctatus                | Larvae                             | Coastal saline wetlands,<br>lagoons, and salt marshes<br>(C/N)                                 | France                              | Yes                  | No                                                   | Yes                  | No                | FA/S                    | Thirion 2014                                                              |
| ripidae<br>Xenopus laevis<br>Danidae              | Juveniles<br>Larvae<br>Adults      | Brackish pond (I/N)<br>Road deicing salts (I/A)                                                | USA<br>USA<br>USA                   | o o<br>N N           | Yes<br>Yes<br>Yes                                    | Yes<br>No<br>No      | Yes<br>No<br>Yes  | FA/S<br>FA/S<br>FA/S    | Munsey 1972<br>Dougherty and Smith 2006<br>McBean and Goldstein 1967      |
| Lithobates berlandieri<br>Lithobates catesbeianus | Adults<br>Adults<br>Adults, larvae | Hypersaline lagoon (C/N)<br>Tidal brackish water (C/N)<br>Beach ponds with salt spray<br>(C/N) | USA<br>USA (Hawaii)<br>USA          | Yes<br>No<br>No      | No<br>No<br>No                                       | Yes<br>Yes<br>Yes    | No<br>No          | SN/NHN<br>SN/NHN        | McCoid 2005<br>La Rivers 1948<br>Hardy 1972                               |
|                                                   | Eggs, larvae<br>Larvae<br>Larvae   | Road deicing salt (I/A)                                                                        | USA<br>USA<br>USA                   | N NO<br>N NO         | $\substack{\mathrm{Yes}\\\mathrm{No}}\\\mathrm{Yes}$ | No<br>No<br>No       | No<br>Yes<br>No   | FA/S<br>FA/S<br>FA/S    | Matlaga et al. 2014<br>Alvarado and Moody 1970<br>Brown and Walls 2013    |

This content downloaded from 198.162.22.40 on Thu, 12 Aug 2021 20:26:21 UTC All use subject to https://about.jstor.org/terms

| Species                  | Life stage           | Habitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Location       | Measured<br>salinity | Tested<br>tolerance | Field<br>observation        | Lab<br>physiology | Paper type    | Reference                                         |
|--------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|---------------------|-----------------------------|-------------------|---------------|---------------------------------------------------|
| Lithobates clamitans     | Eggs, larvae         | Road deicing salt (I/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | USA            | No                   | Yes                 | No                          | No                | FA/S          | Dougherty and Smith 2006;                         |
|                          | Adults eags larvae   | Boadside wetlands (I/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Canada         | Yes                  | Yes                 | Yes                         | No                | FA/S          | Collins and Bussell 2009                          |
|                          | Adults               | Brackish marshes (C/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USA            | No                   | No                  | Yes                         | No                | S/NHN         | Neill 1958                                        |
| Lithobates grulio        | Adults               | Salt marshes (C/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | USA            | No                   | No                  | Yes                         | No                | FA/NS/NHN/S   | Viosca 1923; Neill 1958                           |
| <b>,</b>                 | Adults, larvae       | Coastal wetland with storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | USA            | Yes                  | No                  | Yes                         | No                | FA/S          | Gunzburger et al. 2010                            |
|                          |                      | surge (C/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i              | ;                    | ;                   | ;                           | ;                 | 9<br>-<br>-   |                                                   |
|                          | Adults               | Brackish swamp/forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Puerto Rico    | Yes                  | No                  | Yes                         | No                | FA/S          | Rios-López 2008                                   |
| T is a fort of a during  | A -114               | $(\mathbf{C}/\mathbf{N})$<br>$\mathbf{B}_{coole}$ ( $\mathbf{C}/\mathbf{N}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                      | N.S.                | $\mathbf{V}_{\alpha\alpha}$ | N.S.              | SIN/INTIN     | Crossford and Longe 1022                          |
| Lithobates paintages     | Aduits<br>Aduite     | Deach (O/N)<br>Caling Inling (T/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Guyana         | V <sub>20</sub>      | ov<br>V             |                             | 0No               | CNT/NITNI     | Viawioiu allu julles 1900                         |
| runnanes pupuls          | Adults               | Tidel mouch (CMI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115A           | No.                  | No<br>No            |                             | 0No<br>No         | EN MS         | Vlamons of al 1087                                |
|                          |                      | $\begin{array}{c} 11\text{dat} \text{ marsn} (\text{C/N}) \\ \text{c-1} \\ $ | VSU<br>VSU     | 0N                   |                     | I es                        |                   | FA/NS         | Nemens et al. 1907                                |
| rumonates sphenocephains | Adults<br>Adults     | Salt marsnes (U/N)<br>Salt marshes intertidal zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | USA            | No                   | No                  | 165<br>Vec                  | No                | LA/3<br>NHN/S | Curtsunan 1974<br>Neill 1958                      |
|                          |                      | bay, mangrove swamps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                      |                     |                             | 2                 |               |                                                   |
|                          | Adult, larvae        | Coastal wetland with storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | USA            | Yes                  | No                  | Yes                         | No                | FA/S          | Gunzburger et al. 2010                            |
|                          | A.d140               | surge (C/N)<br>Brookich harr (C/M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11C A          | No                   | No                  | $V_{ m oc}$                 | No                | FAMS          | Duallman and Schumetz 1958                        |
|                          | Larvae               | DIACKNER Day (C/11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | USA<br>HISA    | oN                   | Yes                 | No<br>No                    | No                | FA/S          | Brown and Walls 2013                              |
| Lithobates sulvations    | Adults               | Tidal marsh (C/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Canada         | Yes                  | SO VO               | Yes                         | o<br>No           | FA/NS         | Ouellet et al. 2009                               |
|                          | Adults, eggs, larvae | Roadside wetlands with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USA            | Yes                  | Yes                 | Yes                         | No                | FA/S          | Karraker et al. 2008; Brady 2013                  |
|                          | 8                    | deicing salt (I/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                      |                     |                             |                   |               |                                                   |
|                          | Larvae               | Road deicing salts (I/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | USA            | No                   | Yes                 | No                          | No                | FA/S          | Sanzo and Hecnar 2006; Langhans                   |
|                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                      |                     |                             |                   |               | et al. 2009; Cnambers 2011;<br>Harless et al 2011 |
|                          | Eøøs, larvae         | Road deicing salts (I/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | USA            | No                   | Yes                 | No                          | No                | FA/S          | Snodgrass et al. 2008: Petranka and               |
|                          | àn                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | )                    |                     |                             | 5                 |               | Doyle 2010                                        |
| Lithobates yavapaiensis  | Adults, eggs         | Saline creek (connects to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | USA            | Yes                  | Yes                 | Yes                         | No                | FA/S          | Ruibal 1959                                       |
|                          | F                    | Salton Sea) (I/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c              |                      | ~                   | W.                          |                   | U, Y 11       |                                                   |
| relopnylax perezi        | Eggs<br>Adulte       | Salme lake (L/N)<br>Soline motore (L/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | spain<br>Spain | 1eS<br>Vec           | No.                 | I es<br>Vac                 | o v               | FA/S          | Ortiz-Santanestra et al. 2010<br>Margalef 1956    |
|                          | Larvae               | Coastal saline wetlands, salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | France         | Yes                  | No                  | Yes                         | No                | FA/S          | Thirion 2014                                      |
|                          |                      | marshes (C/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                      | 2                   | 2                           | )                 |               |                                                   |
|                          | Adults, eggs, larvae | Tide pools (C/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Portugal       | Yes                  | No                  | Yes                         | No                | S/NHN         | Sillero and Ribeiro 2010                          |
| Pelophylax ridibundus    | Adults               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Europe         | No                   | No                  | Yes                         | No                | FA/NS         | Mertens 1926                                      |
| -                        | Adults               | Coastal dune pond (C/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | France         | Yes                  | No                  | Yes                         | No                | FA/S          | Thirion 2014                                      |
|                          | Adults               | Saline water (I/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Germany        | Yes                  | No                  | Yes                         | No                | FA/S          | Thienemann 1926                                   |
|                          | Adults               | Arid (I/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Israel         | No                   | Yes                 | oN<br>S                     | Yes               | FA/S          | Katz 1975                                         |
|                          | Adults               | Shores of hypersaline lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Iran           | No                   | No                  | Yes                         | No                | FA/NS         | Asem et al. 2014                                  |
|                          |                      | $(I/N) \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · ·    |                      |                     |                             |                   | OIV AU        | n Jl - 1043                                       |
|                          | Adults               | Saline lake $(I/N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Algena         | Ies                  | o z                 | Yes                         | o Z               | FA/NS         |                                                   |
| retophytax sanancus      | Adults               | bracktsn polid (U/N),<br>hrackish marsh (I/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Algenia        | 0N1                  | NO                  | Ics                         | 001               | CNIMI         | Sallitadui et al. 2012                            |
|                          | Adults, eggs, larvae | Saline water (I/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Algeria        | Yes                  | No                  | Yes                         | No                | TD/S          | Florentin 1899                                    |
| Rana draytonii           | Adults, eggs, larvae | Brackish marsh, tidal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UŠA            | Yes                  | No                  | Yes                         | No                | TD/S / FA/S   | Smith and Reis 1997; Reis 1999                    |
| Rana Interventris        | Adulte               | estuary (C/N)<br>Saline hot envinge and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115A           | Vec                  | No                  | Vec                         | No                | FA/NS         | Brues 1939. Howingh 1993                          |
| num minima mini          |                      | mudflats (I/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1100           | 571                  |                     | 103                         |                   |               |                                                   |
| Rana macrocnemis         | Adults               | Brackish coastal and desert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iran           | No                   | No                  | Yes                         | No                | FA/NS         | Bahmani et al. 2014                               |
| Rana temporaria          | Adults, larvae, eggs | aquatic habitats (C/IN)<br>Brackish tidal pools (C/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UK             | No                   | No                  | Yes                         | No                | S/NHN         | Hardy 1943                                        |
| -                        | 3                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |                     |                             |                   |               | ×.                                                |

This content downloaded from 198.162.22.40 on Thu, 12 Aug 2021 20:26:21 UTC All use subject to https://about.jstor.org/terms

TABLE 1.—Continued.

| Species                             | Life stage   | Habitat                    | Location          | Measured<br>salinity | Tested<br>tolerance | Field<br>observation | Lab<br>physiology | Paper type | Reference                                |
|-------------------------------------|--------------|----------------------------|-------------------|----------------------|---------------------|----------------------|-------------------|------------|------------------------------------------|
|                                     | Adults       | Baltic Sea (C/N)           | Europe            | No                   | No                  | Yes                  | No                | FA/NS      | Mertens 1926                             |
|                                     | Eggs         | Inland ponds (I/N)         | Germany           | Yes                  | Yes                 | Yes                  | No                | FA/S       | Viertel 1999                             |
| -                                   | Eggs         | Brackish ditch (I/N)       | France            | Yes                  | No                  | Yes                  | No                | TD/S       | Florentin 1899                           |
| Rhacophoridae<br>Buergeria japonica | Adults, eggs | Beach, tidal streams (C/N) | Japan             | No                   | No                  | Yes                  | No                | FA/NS      | Goris and Maeda 2005                     |
| <b>.</b><br>D                       | Adults, eggs | Beach, tidal streams (C/N) | Japan             | Yes                  | No                  | Yes                  | No                | FA/S       | Haramura 2004, 2011                      |
|                                     | Eggs         | Beach, tidal streams (C/N) | Japan             | No                   | Yes                 | Yes                  | No                | FA/S       | Haramura 2007a                           |
|                                     | Larvae       | Tidal stream (C/N)         | Japan             | Yes                  | No                  | Yes                  | No                | FA/S       | Haramura 2007b                           |
|                                     | Adults, eggs |                            | lapan             | No                   | No                  | Yes                  | No                | FA/S       | Haramura 2008                            |
| Polypedates maculatus               | Adults       | Tidal mangrove swamp       | Índia, Bangladesh | h No                 | No                  | Yes                  | No                | FA/NS      | Rahman and Asaduzzaman 2010;             |
| Polypedates megacephalus Larvae     | Larvae       | (C/N)<br>Pond (C/N)        | Hong Kong         | No                   | Yes                 | No                   | No                | FA/S       | Jena et al. 2013<br>Karraker et al. 2010 |
| Rhinoderma darwinii                 | Adult        | Beach (C/N)                | Chile             | No                   | No                  | Yes                  | No                | SN/NHN     | Crump 2002                               |
| scapniopodidae<br>Spea hammondii    | Adults       | Saline hot spring (I/N)    | USA               | Yes                  | No                  | Yes                  | No                | FA/NS      | Brues 1932                               |

The remarkable finding that physiological adaptations allowed *Fejervarya cancrivora* in particular to survive in practically marine habitats with daily predictable sources of tidal salinity captivated biologists, and nearly all subsequent work on amphibian salt tolerance and adaptation has been written in reference to this and only one or two other (i.e., *Bufotes viridis, Xenopus laevis*) species (Shoemaker et al. 1992). Thus, statements emphasizing these putative model species have remained common to this day, despite evidence that this pattern may be much more widespread. Indeed, most authors introduce their findings of salt tolerance in their study species by writing something to the effect of: "Salt tolerance is extremely rare in amphibians, and until the present study, has only been documented in the Crab-eating Frog and the Green Toad."

The perception that salt tolerance exists only in a few amphibian species has long persisted in the scientific community (with a few exceptions, e.g., Neill 1958; Balinsky 1981) and has perhaps biased its members in prematurely discounting the presence of amphibians in certain habitats. Herpetologist Edward H. Taylor, in describing "a new ambystomatid salamander adapted to brackish water" (Ambystoma subsalsum [= taylori]; Taylor 1943:152), provides a typical example:

"Dr. Hobart Smith and I visited Lake Alchichica in 1932, but because of the salinity of the water we made no effort to collect salamanders, presuming that they could not occur. In 1939 Mr. Dyfrig McH. Forbes, unaware that salt water is usually not tolerated by amphibians, investigated the lake and succeeded in obtaining two ambystomid larvae."

Gadow (1901) stated that "Common salt is poison to the Amphibia," and there is no doubt that amphibians are indeed osmotically challenged organisms due to their permeable skin and eggs (Shoemaker and Nagy 1977). A plethora of studies have found that salt can lead to increased mortality, developmental deformities, physiological stress, and the alteration of growth and development at (e.g., Ely 1944; Ruibal 1959; Beebee 1985; Padhye and Ghate 1992; Viertel 1999; Turtle 2000; Chinathamby et al. 2006; Dougherty and Smith 2006; Collins and Russell 2009; Karraker and Ruthig 2009; Langhans et al. 2009; Chambers 2011; Duff et al. 2011; Harless et al. 2011; Alexander et al. 2012; Hopkins et al. 2013a,b; Hua and Pierce 2013) and across different lifehistory stages (i.e., carry-over effects; Petranka and Doyle 2010; Wu et al. 2012; Hopkins et al. 2014). This general intolerance has been demonstrated repeatedly (and as such will not be a focus of this review) and, perhaps as a result, there are no truly marine- or saline-specialist amphibian species. Still, the mere presence of so many species of amphibians inhabiting salt-water areas around the world suggests that these animals may be a lot more adaptable than has been suggested for over a century.

Our review challenges the perception of widespread salt intolerance in amphibians by attempting to compile all documented evidence (including a re-examination of Neill 1958) of these animals inhabiting brackish and saline environments whether coastal, inland, natural, or anthropogenically altered. This comes at a critical incipient time, as the biological community begins to become more-fully aware of the ability of amphibians to survive in these habitats around the world. Indeed, almost half (44%) of the references in this review describing amphibians in saline habitats, or their tolerances of salt, were published since 2000, and in the last year and a half alone (January 2013-October 2014) an additional 20 species have been described as inhabiting brackish and saline habitats. With so much burgeoning interest in this topic, it is worth stepping back and analyzing our current state of knowledge on the topic. In addition, while there appears to be much recent interest in documenting the occurrence of amphibians in these habitats, we still know very little regarding how adaptations allowing amphibians to live in these habitats might evolve. We thus conclude this review by outlining an evolutionary model of understanding amphibian adaptation to saline environments. Such studies will be important as freshwater resources become increasingly saline in a world of rising sea levels (Gornitz 1995; Nicholls et al. 1999; Purcell et al. 2008; Rios-López 2008), road deicing salt application (Environment Canada 2001; Thunqvist 2004; Kaushal et al. 2005; Cañedo-Argülles et al. 2013), and secondary salinization (Williams 2001; Christy and Dickman 2002; Chinathamby et al. 2006; Kearney et al. 2012), and we attempt to understand the ability of vulnerable groups such as amphibians to adapt and survive in these habitats.

#### MATERIALS AND METHODS

#### Review of the Literature

We reviewed the scientific literature for reports of amphibians inhabiting brackish or saline environments. For pre-1950s, we relied heavily (but not exclusively) on Neill's (1958) compilation. In doing so, we tried to locate the studies referenced, verify that they met our criteria for inclusion, and classified each study into specific categories (see below). Unlike Neill (1958), we did not include reports of amphibians that were found dead or sickly in saline habitats (e.g., Carl 1949; Neill 1958) or second-hand accounts of frog calling, for example, in areas that might have been brackish or near (but not on) a beach (Bellairs and Shute 1954, as cited in Neill 1958). We included Neill's personal observations, but did not include unverified second-hand accounts in Neill's paper unless the species in question had also been described in a saline habitat in another publication. For post-1950s, we relied heavily on internet searches for scholarly works involving amphibians and saline habitats and included published accounts from natural history surveys, studies of local adaptation or salinity tolerance, natural history notes, or books. While there is a multitude of studies on amphibian osmoregulatory physiology and the effects of road deicing salts on amphibian survival, we did not include species whose tolerance had been physiologically tested but never reported, even anecdotally, in saline habitats in the field (e.g., Ambystoma gracile, Alvarado and Dietz 1970a). We did include some physiological studies of species observed by others in saline habitats, even if the authors had not collected their study subjects from these habitats (e.g., Lithobates catesbeianus, Alvarado and Moody 1970). In summary, our criteria for inclusion in this review were that at least one author had found at least one life-history stage of the species alive and healthy in a saline environment, and that the account had been published. Species names follow Frost (2014).

#### Classification of Habitats

Our literature review for amphibians inhabiting saline environments revealed a diversity of habitats. These included habitats naturally influenced by oceanic salt including beaches, lagoons, salt marshes, mangrove swamps, tidal ponds, pools, streams, estuaries, pools affected by sea spray, oceans, and bays. All of these habitats were classified as coastal/natural (C/N) in Table 1. Other naturally saline habitats included inland seas, saline lakes and ponds, saline hot springs, and temporary desert ponds and streams recorded as saline. These were classified as inland/natural (L/N) in Table 1. We also included habitats (mostly inland) that are affected by anthropogenic sources of salt, such as road deicing salts or secondary salinization, and classified these as such (anthropogenic vs. natural; i.e., A vs. N). Finally, we listed the geographic location of each occurrence.

#### Classification of Studies

To clarify our understanding of amphibian salt tolerance, we classified all studies/observations in several ways. We recorded (Yes/No) in Table 1 whether the study measured the salinity of the reportedly saline environment in which the amphibian was found. Conservatively, those studies that simply reported that the water was definitely brackish but did not report salinity measurements (e.g., Peterson et al. 1952) were not scored as having measured environmental salinity. We also listed whether the authors made a field observation of the animal in a saline environment (Yes/No) and if they subsequently tested salinity tolerance (typically in the laboratory; Yes/No). Those studies that measured some additional aspect of physiological adaptation to salt in the laboratory were also noted. Finally, we classified papers as either being a full-length article (FA), natural history note (NHN), or thesis/dissertation (TD) and whether the focus of the paper was on salt tolerance (S) or not (NS).

#### Estimating Environmental and Experimental Salinity Tolerance Limits

For every species where environmental salinity was measured at the time of field observation, we determined the maximum salinity concentration in which the animal was found. There are many measurement units used in the salinity literature, with very little standardization or consistency (e.g., conductivity, specific conductance, mOsm/L, g/L, mg/mL, mequiv/L, specific gravity, ppt [parts per thousand], ppm [parts per million], psu [practical salinity unit]). To facilitate accurate comparison among species and studies, we converted all values into ppt (g/L Cl-). For those species whose salt tolerance had been experimentally examined in the laboratory, we determined the maximum upper limit of tolerance by arbitrarily defining this as the concentration of salt in which  $\geq 50\%$  of individuals survived. For nonlethal measures, we recorded the upper limit as that concentration which first caused a statistically significant negative effect.

#### **RESULTS AND DISCUSSION**

#### Phylogenetic Breadth

We identified a total of 144 amphibian species, from 65 genera and 28 families, as having representative individuals or populations inhabiting saline habitats (Table 1). This list included representatives from 1 of the 10 caecilian families (10%), 5 of the 9 caudate families (56%), and 22 of the 56 anuran families (39%), representing an impressive breadth across the

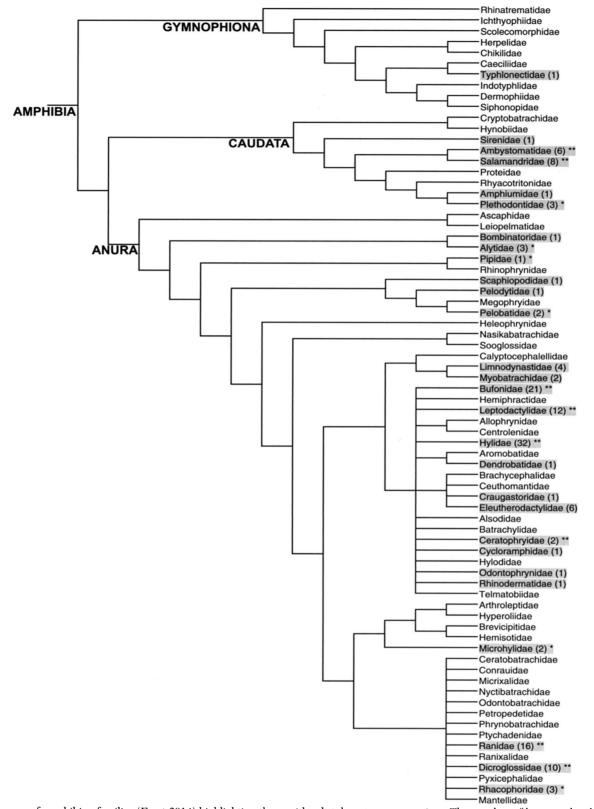



FIG. 1.—Phylogeny of amphibian families (Frost 2014) highlighting those with salt-tolerant representatives. The number of known salt-tolerant species is included in parentheses and families with well-studied species are indicated with asterisks (see Table 2A for \*\* and Table 2B,C for \*).

amphibian tree of life (Fig. 1). This review adds 103 species to the number (41) recorded by Neill (1958). The majority of species described here are anurans (124 vs. 19 caudates and 1 caecilian), but this is not surprising given the relative diversity of frogs and toads compared to other amphibians (6431 anurans vs. 687 caudates and 200 caecilians; Frost 2014).

The large cosmopolitan families Hylidae (32 salt-tolerant species), Bufonidae (21 species), and Ranidae (16 species),

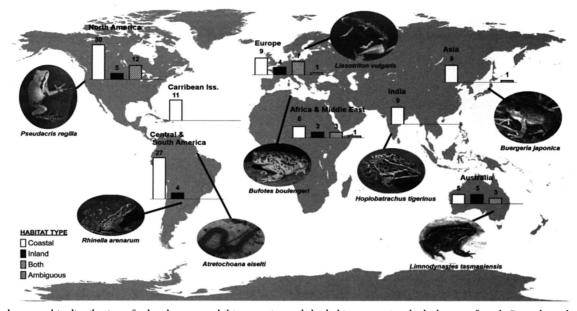
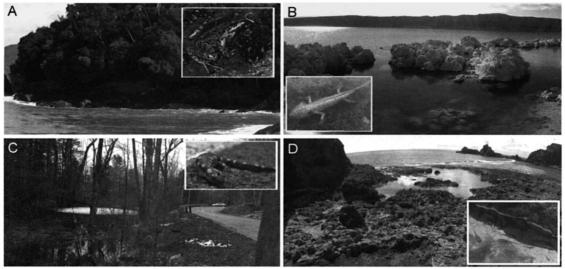



FIG. 2.—Global geographic distribution of salt-tolerant amphibian species and the habitat types in which they are found: Coastal = white bars, Inland = black bars, Both coastal and inland = hatched bars, Ambiguous/not listed = gray bars. Numbers of species are indicated above each bar. Photos show representative species found in saline habitats from each continent: *Pseudacris regilla* (photo by Oregon Department of Fish and Wildlife), *Rhinella arenarum* (photo by A. Kwet), *Bufotes boulengeri* (photo by Manuelgys), *Lissotriton vulgaris* (photo by Viridiflavus), *Hoplobatrachus tigerinus* (photo by Balaram Mahalder), *Buergeria japonica* (photo by Pseudolapiz), *Atretochoana eiselti* (photo by M. Hoogmoed), *Limnodynastes tasmaniensis* (photo by EDB).

as well as the Central and South American Leptodactylidae (12 species) and the Asian species of the Dicroglossidae (10 species), dominated the anurans in this review whereas Salamandridae (8 species) and Ambystomatidae (6 species) made up the majority of salt-tolerant caudates (Fig. 1). Only a couple of individual representatives of one species of aquatic caecilian, Atretochoana eiselti, were found in a tidal stream and pool in Brazil (Hoogmoed et al. 2011). The only other hint of salt tolerance in caecilians comes from a study (Measey et al. 2007) of Schistometopum thomense (Dermophiidae) on oceanic islands off the coast of West Africa. This species is considered endemic to these islands and is a rare example of an amphibian (let alone a caecilian) on a purely oceanic island. The best explanation for its occurrence on these islands is oceanic transport on vegetation rafts, which would imply a probable tolerance of oceanic salinity (Measey et al. 2007). While these hints of possible salt tolerance in caecilians are certainly suggestive, our understanding of adaptation to salt in this group of little-studied amphibians is clearly still very much in its infancy.


#### Geographical and Habitat Distribution

Salt-tolerant amphibians have been reported from all continents except Antarctica (i.e., on every continent where amphibians are found), with the majority of species from North America and, with the exception of Australia, the majority located in naturally saline coastal areas (Figs. 2, 3). A larger count from North America may have more to do with a bias in the number of researchers from this region studying this topic, rather than to a biological phenomenon, especially given that the majority of the world's anuran species are found in the tropics rather than North America. Regardless, it seems that wherever amphibians occur there are examples of salt tolerance having evolved, often in both coastal and inland habitats (Figs. 2, 3).

Although most studies of adaptation to saline habitats have been conducted on natural systems (~95%), a few (e.g., Christy and Dickman 2002; Karraker 2007; Janicke and Roberts 2010; Brady 2012; Kearney et al. 2012; Hopkins et al. 2013b) highlight the importance of examining adaptation in response to anthropogenic sources of salt, principally secondary salinization due to landscape modification and agricultural runoff in Australia and road deicing salt application in North America (e.g., Fig. 3C). While myriad studies have documented the adverse effects of this salinization on amphibians in both habitat types, it appears that some amphibian populations and species have the potential to adapt to artificially elevated levels of salinity in their habitats. This makes sense given amphibians' long evolutionary history of adapting to naturally saline environments, which may give them an edge on adapting to anthropogenic salt (NaCl) over other pollutants (but see later section on "Limitations of Salt Tolerance"). Interestingly, the distinction between natural vs. anthropogenic salinization can also be blurred, as is the case with salt water intrusion into freshwater bodies due to rising sea levels associated with human-induced climate change (Nicholls et al. 1999). In addition, the influx of seawater into natural coastal estuaries, lagoons, and wetlands can also be heavily managed, causing salinities to change dramatically when artificial barriers are purposely breached (Smith and Reis 1997; Moreira et al. 2015). Several species of anurans have been found inhabiting and breeding in these natural/anthropogenic brackish water bodies (Smith and Reis 1997; Moreira et al. 2015) and, intriguingly, it is possible that this management technique actually promotes vs. discourages amphibian occupancy (Moreira et al. 2015).

#### Degree of Understanding

Our data compilation and summary reveals a fairly comprehensive picture of the evolved salt tolerance in at



Fic. 3.—Examples of different types of saline habitats and their amphibian inhabitants. (A) *Thoropa taophora* (Cycloramphidae) on a rocky seashore in Brazil (note presence of mussels and barnacles next to frog in inset; Photo by I. Sazima; see Brasileiro et al. 2010). (B) Neotenic Ambystoma taylori (Ambystomatidae) in inland saline Lake Alchichica, Mexico (photos by E. De Troya, R. Daniel; see Taylor 1943). (C) Ambystoma maculatum (Ambystomatidae) breeding in a roadside pond salinized by road deicing salts in the eastern United States (photo by S. Brady; see Brady 2012). (D) *Fejeroarya limnocharis* (Dicroglossidae) tadpoles in tide-pools on islands off the coast of Taiwan (photo by C.-S. Wu; see Wu and Kam 2009).

least 42 species of amphibians across 27 genera and 14 families (Table 2, Figs. 4, 5). Of these, 17 species ( $\sim 12\%$  of all studied species [Fig. 4] and over half of them from Dicroglossidae or Bufonidae) have been observed in saline habitats in the wild where the environmental salinity of the habitat was measured, the salt tolerance of at least one life-history stage was tested, and some physiological work was performed (Table 2A). Another 21 species have been studied in all but their physiology (Table 2B), and 4 other species have been found in purportedly saline habitats, and their salinity tolerance examined thoroughly (including physiologically), but habitat salinity was not measured (Table 2C). The remaining 102 species and their habitats have not been studied in as much detail, and reports of their tolerance remain somewhat anecdotal (Fig. 4). Some have been tested experimentally for tolerance and, in many cases, environmental salinity was measured. However, in over a quarter of all species, tolerance, environmental salinity, and/ or laboratory physiology were not examined (Fig. 4). Regardless, their mere presence in putatively saline environments is highly suggestive of salt tolerance. Much more detailed work needs to be done on these species and undoubtedly many others.

Of the 144 species found to inhabit saline habitats, only 24 have had all their life-history stages (eggs, larvae, adults/ postmetamorphic juveniles) reported in these habitats or examined for salt tolerance. A total of 131 species have been recorded and/or examined as adults, 75 as larvae, and only 35 as eggs. There is some apparent consensus in the literature that amphibian embryos are most sensitive to salt, followed by larvae, with adults being most tolerant (Gordon et al. 1961; Roberts 1970; Beebee 1985; Padhye and Ghate 1992; Chinathamby et al. 2006; Brand et al. 2010; Petranka and Doyle 2010; Bernabò et al. 2013; Hopkins et al. 2014; Thirion 2014), although there are also some dissenting data and evidence that sensitivity can also change with age within a particular life stage (see Alexander et al. 2012). This may be due to differences in the physiological abilities and mechanisms of different life-history stages to regulate salt. Although

very little work has been conducted on embryonic physiology, to the best of our knowledge eggs have extremely limited osmoregulatory abilities (Gosner and Black 1957; Karraker and Gibbs 2011) while larvae mainly rely on ionic exchange through gill and integumentary Na<sup>+</sup> pumps (Alvarado and Dietz 1970b; Alvarado and Moody 1970; Gomez-Mestre et al. 2004; Bernabò et al. 2013). Adult amphibians rely on both this integumentary ionic exchange and the ability to hypersynthesize and retain urea to increase body osmolarity (reviewed by Shoemaker and Nagy 1977; Balinsky 1981; Katz 1989). While some species inhabiting saline habitats appear to avoid egg deposition in highly saline water (e.g., Viertel 1999; Haramura 2008, 2011), perhaps due to this apparent sensitivity of eggs many other species do indeed breed in these habitats, and eggs and larvae have been found in saline waters for numerous species (Table 1). More research needs to be conducted on this topic, especially on early life-history stages for which we have a relative paucity of knowledge, before broad generalizations can be made regarding salt tolerance across life-history stages in amphibians.

#### Type of Published Work

Over a third of published works were full-length articles with a focus on amphibian adaptation to salinity (Fig. 6). Including natural history notes and theses/dissertations, just over half of all articles were focused on salt (Fig. 6). This emphasizes the importance of non-salt-tolerance literature in reporting on the habits and habitats of amphibians. Many of these articles were general field notes and natural history surveys from the late 1800s-early 1900s, some focused on amphibians (e.g., Boulenger 1897–1898) and others not (e.g., Annandale 1907). More-recent articles on faunistic surveys of certain habitats (e.g., Chan and Goh 2010; Jena et al. 2013), range extensions (e.g., Alvarez-León and De Ayala-Monedero 2000; Wogan et al. 2008), and general natural history notes (e.g., Crump 2002) of particular species were equally valuable. TABLE 2.—Well-studied salt-tolerant amphibian species.

| Family                                                            | Species                                     |
|-------------------------------------------------------------------|---------------------------------------------|
| A. Species comprehensively studie<br>observation, lab physiology) | d (environmental salinity, tolerance, field |
| Ambystomatidae                                                    | Ambystoma tigrinum                          |
| Bufonidae                                                         | Bufo bufo                                   |
|                                                                   | Bufotes balearicus                          |
|                                                                   | Bufotes viridis                             |
|                                                                   | Duttaphrynus melanostictus                  |
|                                                                   | Epidalea calamita                           |
|                                                                   | Rhinella arenarum                           |
|                                                                   | Rhinella marinus                            |
| Ceratophryidae                                                    | Lepidobatrachus asper                       |
| Dicroglossidae                                                    | Euphlyctis cyanophlyctis                    |
| 0                                                                 | Fejervarya cancrivora                       |
|                                                                   | Fejervarya limnocharis                      |
|                                                                   | Hoplobatrachus tigerinus                    |
| Hylidae                                                           | Pseudacris regilla                          |
| Leptodactylidae                                                   | Pleurodema nebulosum                        |
| Ranidae                                                           | Lithobates sphenocephalus                   |
|                                                                   | Pelophylax ridibundus                       |

B. Species where all but lab physiology was tested (environmental salinity, tolerance, field observation)
 Ambustometidae

| Ambystomatidae                     | Ambystoma maculatum                      |
|------------------------------------|------------------------------------------|
|                                    | Ambystoma taylori                        |
| Salamandridae                      | Taricha granulosa                        |
| Alytidae                           | Discoglossus pictus                      |
| ,                                  | Discoglossus sardus                      |
| Bufonidae                          | Anaxyrus americanus                      |
|                                    | Anaxyrus terrestris                      |
| Dicroglossidae                     | Hoplobatrachus rugulosus                 |
| Hylidae                            | Hyla cinerea                             |
|                                    | Litoria aurea                            |
|                                    | Pseudacris crucifer                      |
| Leptodactylidae                    | Leptodactylus albilabris                 |
| Microhylidae                       | Gastrophryne carolinensis                |
| Pelobatidae                        | Pelobates cultripes                      |
|                                    | Pelobates fuscus                         |
| Ranidae                            | Lithobates clamitans                     |
|                                    | Lithobates sylvaticus                    |
|                                    | Lithobates yavapaiensis                  |
|                                    | Pelophylax perezi                        |
|                                    | Rana temporaria                          |
| Rhacophoridae                      | Buergeria japonica                       |
| C. Species where all but environme | ental salinity was tested (tolerance, fi |

C. Species where all but environmental salinity was tested (tolerance, field

| observation, lab physiology) |                           |
|------------------------------|---------------------------|
| Plethodontidae               | Batrachoseps gavilanensis |
| Salamandridae                | Salamandra salamandra     |
| Pipidae                      | Xenopus laevis            |
| Ranidae                      | Lithobates catesbeianus   |

A full review of unpublished dissertations and theses was not completed for this review, but their potential importance to the field is clearly illustrated by the case of *Pseudacris* regilla. Our knowledge of salt tolerance in this species now rivals that of the most well-known salt-tolerant amphibians (Table 2A), but only due to the unpublished dissertation of James O. Roberts (1970) and the thesis of David L. Weick (1980). These authors found animals in brackish coastal waters, recorded environmental salinity, tested tolerance of locally adapted populations, and determined the osmoregulatory physiology of animals in these populations. Without these studies, knowledge of salt tolerance in P. regilla would be confined to anecdotal notes (Table 1). It is probable that there are many other species of fully investigated, salttolerant amphibians residing in the pages of unpublished dissertations and theses that have not made it into this review.

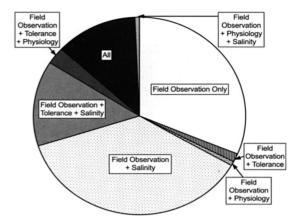



FIG. 4.—Proportions of the different aspects of salt tolerance tested in amphibian species. Black corresponds to species listed in Table 2A; gray to species listed in Table 2B,C. White are those species that have not been investigated as thoroughly (i.e., not in Table 2).

Finally, the importance of natural history notes and short observations, making up just under a quarter of the references in this review (Fig. 6), cannot be overstated. These observations were commonplace 100 yr ago but are now published in only a few journals (e.g., Herpetological Review, Herpetology Notes, Herpetological Natural History). They provide valuable insights into a remarkable worldwide phenomenon and may serve as the starting point for more-intensive studies. For example, Ferguson's (1956) natural history note of observations of *Taricha granulosa* near the ocean inspired our own studies on *Taricha* salt tolerance (Hopkins et al. 2013b, 2014).

We have now established that salt tolerance in amphibians is not as rare as previously thought, and many of the proximate physiological mechanisms that these animals use in these challenging environments have been elucidated in detail for some species. However, our understanding of the ultimate question, how amphibian populations evolve to be salt-tolerant, is still in its infancy. Given the number of times

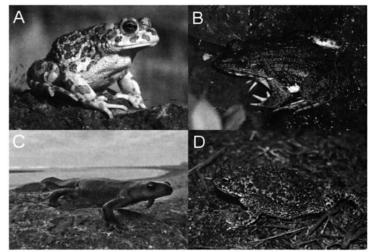



FIG. 5.—Examples of well-studied amphibians inhabiting saline habitats (Table 2). (A) *Bufotes balearicus* (= *viridis*) (Bufonidae) in Europe, Africa, and the Middle East (photo by R. Bartz). (B) *Fejerarya cancrivora* (Dicroglossidae) from mangrove swamps in Southeast Asia and India (photo by W.A. Djatmiko). (C) *Taricha granulosa* (Salamandridae) from a tidal stream in North America (photo by GRH). (D) *Epidalea calamita* (Bufonidae) from a saline desert pond in Spain (photo by I. Gomez-Mestre).

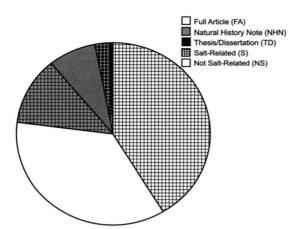



FIG. 6.—Classification—of the literature as full articles (FA), naturalhistory notes (NHN), dissertations or theses (TD), and if the work was focused on salt tolerance (S) or not (NS).

tolerance has occurred, phylogenetically (Fig. 1) and geographically (Fig. 2), and continues to evolve in a rapidly changing world (e.g., Brady 2012), our understanding of variation, selective forces, differential survival, and heritability is still mostly unexplored. We now turn our attention to this evolutionary approach: How does a salt-naïve population evolve and locally adapt to become a more–salt-tolerant population or species? Although additional empirical work in this area is needed, we review the current state of knowledge, and provide a basic framework for considering this question, in the hopes of stimulating development of an evolutionary model of amphibian adaptation to saline habitats.

# Toward an Evolutionary Model of Amphibian Adaptation to Saline Habitats

#### Genetic Nature of Salinity Tolerance

Populations can adapt to novel or challenging environments in two ways, either through the propagation of new mutations or through natural selection acting on standing genetic variation in traits (Barrett and Schluter 2007). While the propagation of new mutations can be effective, it is generally a much-slower process with a lower probability of fixation than is selection exploiting existing standing genetic variation (Barrett and Schluter 2007). Surprisingly few studies have examined standing variation for salinity tolerance in amphibians, but those that have looked have found it (Roberts 1970; Gomez-Mestre and Tejedo 2003, 2004; Hopkins et al. 2013b). Significant variation in salinity tolerance has been examined among sibships of Natterjack Toads (Epidalea calamita) inhabiting fresh and saline lakes in Spain (e.g., Fig. 5D; Gomez-Mestre and Tejedo 2003, 2004) as well as in Pacific Tree-Frogs (Pseudacris regilla) in Oregon, USA (Roberts 1970). Roberts (1970: 32) wrote: "It was observed that, even in tests run on animals from salt sensitive areas, there were always a few animals that survived the highest levels of salt in the test solutions. This suggested that there was at least a measure of plasticity, with respect to salinity tolerance, in the gene pool." These findings are similar to what has been found with Rough-Skinned Newts (Taricha granulosa; e.g., Fig. 5C) on the Pacific Coast of North America (Hopkins et al. 2013b). In a salt-naïve population inhabiting an inland pond, some females had 100% survival of eggs in salt water whereas others from the same population had 100% mortality, representing a significant female  $\times$  salt interaction and the potential for local adaptation (Hopkins et al. 2013b).

While variation is critical for natural selection, it is so only in the degree to which it is heritable. Broad-sense heritability in salinity tolerance has been found in locally adapted Natteriack Toad (Epidalea calamita) populations, which increased with increased salinity (up to  $H^{2^{*}} = 0.50$ ; Gomez-Mestre and Tejedo 2004). However, narrow-sense estimates of heritability did not necessarily follow the same pattern, possibly due to other additive effects including maternal effects. Maternal effects of female or egg size were not found, however, to have any significant effect on either local adaptation (Brady 2012) or variation (Hopkins et al. 2013b) in other salt-tolerant amphibians (tests on eggs). Thus, there appears to be modest evidence that salt tolerance is genetic in nature. The fact that a high degree of genetic population subdivision (high interpopulation Q<sub>ST</sub> values) for salinity tolerance persists in E. calamita is especially important in the face of molecular evidence indicating otherwise little genetic population differentiation and moderate to high gene flow  $(F_{ST})$  between fresh and saline populations of toads (Gomez-Mestre and Tejedo 2004). The fact that local adaptation may have occurred in populations of toads in the face of this significant gene flow and presumed migration reveals the intense nature of the selective pressures of salinity.

To date, these studies remain the only hints of the genetic nature of salinity adaptation in amphibians. To the best of our knowledge, no molecular studies have identified genes for salt tolerance in amphibians or compared the genetic profiles of locally adapted populations. While very little knowledge is currently available on genetic variation in salt tolerance within populations, we predict that, if examined, one would find significant standing genetic variation in salinity tolerance in salt-naïve populations of many amphibian species and that this variation is key to their adaptive ability. The sheer number of salt-tolerant species worldwide, and their apparently deep evolutionary relationships (Fig. 1), indicates that alleles for salinity tolerance (if they exist) in amphibians are most likely old and have been pretested by selection (Barrett and Schluter 2007) in many species and populations inhabiting naturally saline environments. This would help explain the rapid evolution of salt tolerance observed in some inland populations in response to anthropogenic application of salt (e.g., Brady 2012; Fig. 3C), as the pace of evolution by natural selection is much faster with standing genetic variation than for new mutations. Adaptation to anthropogenic change has indeed been predicted to be primarily the result of standing genetic variation (Barrett and Schluter 2007; Bell 2013). Fully understanding the genetic nature of salinity tolerance clearly is the biggest, and most pressing, hurdle that remains in our elucidation of the evolution of amphibian adaptation to both natural and anthropogenic salt.

#### Origins of Salt Tolerance

The fact that alleles for salt tolerance might exist in amphibian populations is not surprising considering the primary importance of osmoregulatory functioning in these animals. Amphibians, due to their permeable skin and egg membranes, are highly sensitive to water loss at all life-stages

and in all its forms (Shoemaker and Nagy 1977; Katz 1989). At the same time, amphibians generally live in environments deficient of salts, and thus their skin has evolved to be very efficient at transporting  $Na^+$  and  $Cl^-$  ions into the body (Shoemaker and Nagy 1977). Efficient osmoregulation is a key trait under intense selective pressure in these animals. This is true whether the animal lives in arid conditions, where it must burrow in soil to aestivate, or in hyperosmotic saline aquatic systems, and amphibians can be found in both habitats (Katz 1989). Indeed, some species found in both arid and saline aquatic environments, such as the toad Bufotes viridis (= balearicus, Fig. 5A; Degani et al. 1984; Katz 1989) and the salamander Ambystoma tigrinum (Delson and Whitford 1973), appear to use the same osmoregulatory physiological mechanism, overactive urea synthesis and retention, to achieve tolerance of hyperosmotic conditions in both habitats. Thus, salinity tolerance in amphibians might have its evolutionary origins as an exaptation of tolerance to arid conditions (Gomez-Mestre and Tejedo 2005). Conversely, adaptation to arid conditions might be an exaptation to salt tolerance (Hoffman 2014). It has been proposed, for example, that Bufotes viridis initially evolved in aquatic environments with fluctuating salinity and then dispersed to arid environments once this adaptation to increased ion concentrations had evolved (Hoffman 2014). Degani (1981) found support for a link between aridity and salinity tolerance in Salamandra salamandra, as salamanders from semiarid areas of Israel were more tolerant of saline aquatic conditions than were animals from moist habitats. When explicitly testing this exaptation hypothesis with the toad Epidalea calamita, however, Gomez-Mestre and Tejedo (2005) could find no support for it and concluded that drought tolerance and salinity tolerance may have evolved independently in this species. Support for this conclusion also comes from the fact that the osmoregulatory physiological mechanisms amphibians employ pre- and postmetamorphosis appear to be fundamentally different, with larvae regulating salts through ionic exchange and juveniles and adults primarily relying on the overactive synthesis and retention of urea (Gomez-Mestre et al. 2004; Gomez-Mestre and Tejedo 2005; Bernabò et al. 2013). As the physiological mechanism larvae employ for regulating increased ion concentrations would not work for postmetamorphic individuals facing drought conditions, this decoupling of osmoregulatory mechanisms pre- and postmetamorphosis suggests that drought tolerance and salinity tolerance may have evolved independently (Gomez-Mestre and Tejedo 2005). In addition, although there are certainly amphibian species such as these that occur in both arid and saline habitats, there arguably are more that occur in coastal habitats (Fig. 2) where salinity tolerance in the face of oceanic salt would be highly beneficial. In direct contrast to Darwin's (1859) views on the matter, it now appears that salt tolerance in coastal amphibians may have resulted in the ability of these animals to disperse across oceans (Vences et al. 2003; Measey et al. 2007).

It is possible that ecological factors, including biotic interactions, could drive diversification of amphibians into saline habitats. Salinity is known as a driving force governing the composition of aquatic ecological communities (Gunter 1956), and recent work has suggested that salinity can affect the interactions of amphibians with other community

members (e.g., food-web dynamics) both directly and indirectly (Petranka and Doyle 2010; Chambers 2011; Van Meter et al. 2011; Petranka and Francis 2013; Moreira et al. 2015; Van Meter and Swan 2014). Adaptation to salinity could certainly lead to novel predation opportunities for amphibians in these environments, as has been shown in some South American anurans eating marine invertebrates, for example (Sazima 1971; Brasileiro et al. 2010; Ferreira and Tonini 2010). It is also possible that salinity intolerance of freshwater invertebrate predators could lead amphibians to adapt to saline habitats to escape predation pressure (Moreira et al. 2015; although this must be balanced by potentially increased pressure from marine predators; Pyke et al. 2013). Differential susceptibility to salt can also affect amphibian species diversity and community composition in saline habitats (Karraker et al. 2008; Collins and Russell 2009; Karraker et al. 2010; Brown and Walls 2013; Gallagher et al. 2014; Moreira et al. 2015). Thus, an escape from competitors or predators, or novel prey opportunities (in short, changes in community composition and structure), may be driving forces in the evolution of salt tolerance in amphibians. Research on this topic, however, remains relatively speculative and correlative at this time. The demonstration of definitive causal links between salinity, community composition, ecological interactions, and selective advantages for amphibians still needs to be completed and is an important endeavor for future investigation.

#### The Nature of Selection in Osmotically Stressful Environments

For amphibians in osmotically stressful environments, events that favor salinity tolerance may be predictable or unpredictable; this can have important consequences for evolution (Badyaev 2005; Parsons 2005). Regular, predictable exposure to salt is typified by amphibians inhabiting mangrove swamps, where daily tidal cycles temporarily increase salinity in a predictable way (e.g., Jena et al. 2013). The most-familiar example of this is Crab-Eating Frogs of Southeast Asia, Fejervarya cancrivora (Fig. 5B), the most well-known euryhaline amphibian, whose physiological mechanisms for dealing with this predictable source of salinity were described by Gordon et al. (1961). In addition, amphibians may be able to adapt with the help of gradual acclimation to gradually increasing salinity in some environments where salinity is primarily elevated through evaporation (Gomez-Mestre and Tejedo 2003; Wu et al. 2014). Although these selection pressures may be common in some environments, amphibians in many other environments may experience much-more unpredictable, dramatic salinity selection events. Indeed, it has been argued that dramatically fluctuating salinity levels are the norm, rather than the exception, in most environments (Wu et al. 2012; Kearney et al. 2014).

Stochastic coastal storm events can periodically wash seawater into otherwise mostly freshwater or tidal habitats (Thirion 2002; Gunzburger et al. 2010; Pyke et al. 2013; Hopkins and Hopkins in press). This habitat can thus change dramatically and unpredictably and so, even though an area may be fresh for much of the time, extreme "pulses of selection" exist to maintain saline-adapted animals in this habitat (Gunzburger et al. 2010). Bell (2013: 3) notes, "A catastrophic event that threatens the survival of a population is likely to occur only at long intervals, but when it does occur, it will have a decisive effect on the subsequent history of that population, because the resistant types that survive may have previously been very rare. Thus, the long-term fate of a population will often be governed by the extreme values of environmental and genetic variation." Most amphibians found in coastal habitats live in rock pools, streams, and beach areas affected by sea spray, waves, and storms (Table 1, Fig. 3A,D). Roberts (1970) typified these observations for coastal Pacific Tree-Frogs (Pseudacris regilla): "One population sampled in this study came from a 'freshwater' pool within 5 m of mean high tide and the tadpoles and eggs were collected in a shower of salt spray." Amphibians in coastal areas increasingly have to deal with storm surges and inundations of habitats with seawater during extreme weather events (e.g., tsunamis, hurricanes, etc.) as they increase in frequency with climate change (Thirion 2002; Gunzburger et al. 2010; Brown and Walls 2013). Thus, amphibians in these habitats have been forced to evolve tolerance in response to these intermittent salinity events (Gunzburger et al. 2010; Brown and Walls 2013; Moreira et al. 2015). The salinity of coastal areas can also be affected by anthropogenic management activities, such as artificially opening and closing estuaries, resulting in the same pattern of disruptive, intermittent salinity inundation (Moreira et al. 2015).

Road deicing events also result in extreme, transient spikes of salinity in roadside aquatic habitats, not unlike a coastal storm event (Whitfield and Wade 1992, 1996), and habitat degradation and the changing of agricultural practices are also leading to extreme and unpredictable fluctuations of salinity in many inland habitats (Kearney et al. 2014). Unpredictable episodes of selection therefore probably play some of the most important roles in amphibian adaption to salt in both inland and coastal natural and anthropogenically altered environments. Our understanding of how amphibians adapt to these fluctuating environments is still, however, mostly unexplored. Kearney et al. (2014) provide a much-needed first look at this subject, and their results suggest that animals experiencing transient salinity react very differently than do those experiencing constant salinity. Much more work is needed on this subject, as understanding the frequency, predictability, and nature of selection events clearly is key to our understanding of adaptation in these environments (Parsons 2005; Bell 2013).

#### Limitations of Salt Tolerance

A final note should be made on possible limits to amphibian adaptation to salt. While there is extensive and important literature on the limitations of adaptation in general (Parsons 2005; Bell 2013), specific points salient to amphibian salt tolerance in particular can be made here.

First, there may be limits to the concentration of salt to which certain amphibians can adapt. Our review of the literature where environmental salinity was measured and/or salt tolerance was determined experimentally in the laboratory (Table 3) indicates that despite amphibians (and especially anurans) being found in, and found to be tolerant of, an extremely wide range of salinities (0.11–39 ppt; Table 3), the majority of species are found in habitats with maximum salinities of ~2–13 ppt and have a median maximum experimental tolerance of ~9–12 ppt (Fig. 7). This convergence may therefore represent a general upper limit of salt tolerance for most amphibian species-and was predicted (as 10 ppt) by Gomez-Mestre and Tejedo (2003) over 10 yr ago. It should be emphasized, however, that this general finding does not necessarily apply to all species or all populations of a particular species. In particular, we urge caution in directly comparing caudate and anuran species due to the relative paucity of knowledge on caudates, especially regarding experimental tolerance data (only 4 caudate species examined versus 39 anurans; Fig. 7). In addition, for this analysis (Table 3; Fig. 7) we chose the highest salt tolerance level found for a species, not the average among populations. There are certainly many species included here where deleterious effects were seen in individuals from certain populations at lower salinities than were seen in other populations and where many of the populations were not found in waters as salty as the one population we chose to represent the maximum for this species. In addition, there are clearly several species of anurans that are found in, and can tolerate, extremely high salinities (Table 3; Fig. 7). Although the most well-known of these euryhaline amphibians are Crab-eating Frogs (Fejervarya cancrivora) in salinities up to 39 ppt (35 ppt measured environmentally; Gordon et al. 1961; Gordon and Tucker 1968; Dunson 1977; Uchiyama et al. 1990), North America's Rio Grande Leopard Frogs (Lithobates berlandieri; McCoid 2005) and Australia's Spotted-Thighed Tree Frogs (Litoria cyclorhyncha; Janicke and Roberts 2010) have also been found in salinities rivaling or exceeding F. cancrivora (39) ppt, and 37.4 ppt, respectively).

One of the ways that euryhaline amphibians such as Fejervarya cancrivora and Bufotes viridis are able to tolerate such high salinities in the laboratory is through gradual acclimation to increasing salinity (Gordon et al. 1961; Gordon 1962; Gordon and Tucker 1968; Katz 1973). Acclimation may increase tolerance in these and other species (e.g., Licht et al. 1975; Wu et al. 2014) through physiological means such as increased Na<sup>+</sup>/K<sup>+</sup>-ATPase expression, allowing larvae to more-efficiently maintain osmotic homeostasis (Bernabò et al. 2013; Wu et al. 2014). The effects of acclimation do not appear to be universal, however, and in some cases may have either no effect (Kearney et al. 2014) or even inhibit adaptation (e.g., Hua and Pierce 2013). Acclimation to gradually increasing salinities may be a realistic ecological scenario in some habitats, such as saline desert ponds, where evaporation leads to increasing salinity over time (Gomez-Mestre and Tejedo 2003), but may be less ecologically realistic in other habitats where salinity may be governed more by dramatic unpredictable events such as storms and road deicing salt application (see above; Hopkins et al. 2014). Many species may therefore be limited in their adaptive abilities by a lower (but still effective and ecologically realistic) salinity limit to which they can respond immediately, without the need for gradual acclimation.

Despite the evidence that amphibian populations can locally adapt to saline environments, for some populations evidence is emerging that this may not always be possible (Brady 2013). In habitats subjected to anthropogenic salt, the pace of salinization may take place faster than adaptation can occur—and this, combined with severely reduced population sizes, a loss of genetic diversity, asymmetrical  $T_{ABLE} \ 3. \\ \mbox{Maximum salinity concentrations (ppt \ Cl^-) measured in the field where amphibians were observed, and maximum salt tolerance limits measured in the lab for amphibian species where these were measured (see Methods text for full definition of tolerance). The references given are for those maximum values listed here and do not represent the range of values in which species have been found or have been experimentally found to be tolerant.$ 

| Species                                 | Life stage     | Environmental salinity (ppt) | Experimental tolerance (ppt) | Reference                                  |
|-----------------------------------------|----------------|------------------------------|------------------------------|--------------------------------------------|
| Caudata                                 |                |                              |                              |                                            |
| Ambystomatidae                          |                |                              |                              |                                            |
| Ambystoma maculatum                     | Eggs, larvae   | 1.56                         | 0.145                        | Karraker et al. 2008                       |
| Ambystoma talpoideum                    | Adults, larvae | 4.9                          |                              | Gunzburger et al. 2010                     |
| Ambystoma taylori                       | Larvae         | 8.3                          |                              | Taylor 1943                                |
| Ambystoma tigrinum                      | Larvae         | 0.0                          | 10.29                        | Gasser and Miller 1986                     |
| innogstonia ngrinani                    | Larvae         | 15                           | 10.20                        | Duerr and Ness 1970                        |
| Diagmentadan tanahranya                 | Larvae         | 15                           |                              |                                            |
| Dicamptodon tenebrosus                  | Larvae         | 1                            |                              | Hopkins and Hopkins in press               |
| Amphiumidae                             |                | 10                           |                              |                                            |
| Amphiuma means                          | Adults, larvae | 4.9                          |                              | Gunzburger et al. 2010                     |
| Salamandridae                           | _              |                              |                              |                                            |
| Lissotriton helveticus                  | Larvae         | 21.95                        |                              | Spurway 1943                               |
| Lissotriton vulgaris                    | Adults         | 17                           |                              | Decksbach 1922                             |
| Notophthalmus                           | Adults, larvae | 4.9                          |                              | Gunzburger et al. 2010                     |
| viridescens                             |                |                              |                              | 0                                          |
| Salamandra salamandra                   | Adults         |                              | 12.9                         | Degani 1981                                |
| Taricha granulosa                       | Adults         | 1.4                          |                              | Hopkins and Hopkins in press               |
| Triturus dobrogicus                     | Neotenic adult | 1.72                         |                              | Mester et al. 2013                         |
| Triturus marmoratus                     | Adults         | 1.72                         |                              | Thirion 2014                               |
|                                         | Adults         | 1                            |                              | Thirion 2014                               |
| Plethodontidae                          |                |                              |                              |                                            |
| Batrachoseps gavilanensis               | Adult          |                              | 17                           | Licht et al. 1975                          |
| Eurycea quadridigitata                  | Adults, larvae | 4.9                          |                              | Gunzburger et al. 2010                     |
| Sirenidae                               |                |                              |                              | -                                          |
| Siren lacertina                         | Adults         | 4                            |                              | Boss and Chesnes 2014                      |
| Anura                                   |                |                              |                              |                                            |
| Alvtidae                                |                |                              |                              |                                            |
| Discoglossus pictus                     | Larvae         | 6.08                         | 10                           | Knoepffler 1962                            |
| Discoglossus sardus                     | Larvae         | 9                            | 13                           | Knoepffler 1962                            |
|                                         | Laivae         | 3                            | 15                           | Kiloepinei 1902                            |
| Bombinatoridae                          |                | 10                           |                              | <b>F</b> I :: 1000                         |
| Bombina variegata                       | Adults, larvae | 13                           |                              | Florentin 1899                             |
| Bufonidae                               |                |                              |                              |                                            |
| Anaxyrus americanus                     | Adults         | 2                            |                              | Ouellet et al. 2009                        |
|                                         | Larvae         |                              | 3.9                          | Collins and Russell 2009                   |
| Anaxyrus boreas                         | Adults, larvae | 4.5                          |                              | Brues 1932                                 |
| Anaxyrus quercicus                      | Adults, larvae | 4.9                          |                              | Gunzburger et al. 2010                     |
| Anaxyrus terrestris                     | Adults, larvae | 4.9                          |                              | Gunzburger et al. 2010                     |
| inaryrus terrestris                     | Larvae         | 4.0                          | 10                           | Brown and Walls 2013                       |
| Puto huto                               |                |                              | 4.8                          |                                            |
| Bufo bufo                               | Larvae         | 0                            | 4.8                          | Bernabò et al. 2013                        |
|                                         | Larvae         | 8                            | <b>a</b> <i>t</i>            | Florentin 1899                             |
| Bufotes balearicus                      | Larvae         | 0.11                         | 6.4                          | Bernabò et al. 2013                        |
| Bufotes boulengeri                      | Larvae         | 0.21                         |                              | El Hamoumi et al. 2007                     |
| Bufotes viridis                         | Adults         | 20                           |                              | Gislén and Kauri 1959                      |
|                                         | Adults         |                              | 25                           | Tercafs and Schoffeniels 1962              |
| Duttaphrynus                            | Adults         | 12.87                        |                              | Annandale 1907                             |
| melanostictus                           |                |                              |                              |                                            |
|                                         |                |                              | 11.2                         | Chakko 1968                                |
| Epidalea calamita                       | Eggs, larvae   | 22                           | 11.2                         | Gomez-Mestre and Tejedo 2003               |
|                                         | Eggs, laivae   | 22                           |                              |                                            |
| Incilius nebulifer<br>Poltombrung Lemur | Eggs, larvae   | 0.16                         | 4                            | Alexander et al. 2012<br>Matag Tarmag 2006 |
| Peltophryne lemur                       | Adults, eggs   | 2.16                         | 10                           | Matos-Torres 2006                          |
| Rhinella arenarum                       | Adults, larvae | 4                            | 10                           | Ruibal 1962                                |
| Rhinella crucifer                       | Larvae         | 18                           |                              | Guix and Lopes 1989                        |
| Rhinella marina                         | Adults, larvae | 20.5                         |                              | Rios-López 2008                            |
|                                         | Adults         |                              | 16                           | Liggins and Grigg 1985                     |
| Ceratophryidae                          |                |                              |                              | 55 66                                      |
| Lepidobatrachus asper                   | Adults, larvae | 4                            | 10                           | Ruibal 1962                                |
| Dicroglossidae                          |                | -                            | ±                            |                                            |
| Euphlyctis cyanophlyctis                | Adults         | 12.87                        |                              | Appendelo 1007                             |
| гартусы <i>s су</i> анортусыs           | Audits         | 12.07                        | 0                            | Annandale 1907                             |
|                                         |                | 27                           | 8                            | Chakko 1968                                |
| Fejervarya cancrivora                   | Adults, larvae | 35                           | 39                           | Gordon et al. 1961                         |
| Fejervarya limnocharis                  | Larvae         | 12                           |                              | Wu and Kam 2009                            |
| -                                       | Larvae         |                              | 9.6                          | Gordon and Tucker 1965                     |
| Hoplobatrachus rugulosus                | Adults         | 5                            | 10.2                         | Davenport and Huat 1997                    |
| Hoplobatrachus tigerinus                | Adults         | 12.87                        | 10.4                         | Annandale 1907                             |
| nopiobarraciais agermas                 |                | 14.07                        | 0                            |                                            |
|                                         | Adults         |                              | 9                            | Gordon et al. 1961                         |
| Eleutherodactylidae                     |                |                              |                              |                                            |
| Eleutherodactylus coqui                 | Adults         | 20.5                         |                              | Rios-López 2008                            |
| Hylidae                                 |                |                              |                              | -                                          |
| Acris gryllus                           | Adults, larvae | 4.9                          |                              | Gunzburger et al. 2010                     |
|                                         | Adults         | 15                           |                              | Hardy 1953                                 |

|                            | Life stage                       | Environmental salinity (ppt) | Experimental tolerance (ppt) | Reference                      |
|----------------------------|----------------------------------|------------------------------|------------------------------|--------------------------------|
|                            | larvae                           | 4.0                          | 10                           | Brown and Walls 2013           |
| Hyla femoralis             | Adults, larvae                   | 4.9                          |                              | Gunzburger et al. 2010         |
| Hyla gratiosa              | Adults, larvae                   | 4.9                          |                              | Gunzburger et al. 2010         |
| Hyla meridionalis          | Adult, larvae                    | 9                            |                              | Thirion 2014                   |
| Hypsiboas geographicus     | Larvae                           | 4.5                          |                              | Guix and Lopes 1989            |
| Hypsiboas pulchellus       | Adults                           | 2.5                          |                              | Moreira et al. 2015            |
| Litoria aurea              | Larvae                           | 7.3                          | 50                           | Pyke et al. 2002               |
| ×                          | Larvae                           | 0                            | 5.6                          | Kearney et al. 2012            |
| Litoria caerulea           | Adult, larvae                    | 6                            |                              | Pyke et al. 2002               |
| Litoria cyclorhyncha       | Adults, larvae                   | 37.4                         |                              | Janicke and Roberts 2010       |
| Litoria dentata            | Adult, larvae                    | 6                            |                              | Pyke et al. 2002               |
| Litoria peronii            | Adult, larvae                    | 6                            |                              | Pyke et al. 2002               |
| Litoria tyleri             | Adult, larvae                    | 6                            |                              | Pyke et al. 2002               |
| Osteopilus septentrionalis | Larvae                           |                              | 12                           | Brown and Walls 2013           |
| Pseudacris crucifer        | Adults, larvae                   | 0.59                         | 2.9                          | Collins and Russell 2009       |
| Pseudacris maculata        | Adults                           | 2                            |                              | Ouellet et al. 2009            |
| Pseudacris nigrita         | Adults, larvae                   | 4.9                          |                              | Gunzburger et al. 2010         |
| Pseudacris ocularis        | Adults, larvae                   | 4.9                          |                              | Gunzburger et al. 2010         |
| Pseudacris regilla         | Adults, larvae                   | 7.2                          |                              | Smith and Reis 1997            |
| 0                          | Adults, larvae                   |                              | 9.5                          | Roberts 1970                   |
| Scinax squalirostris       | Adults                           | 2.5                          |                              | Moreira et al. 2015            |
| Leptodactylidae            |                                  |                              |                              |                                |
| Leptodactylus albilabris   | Adults, larvae                   | 20.5                         | 4                            | Rios-López 2008                |
| Leptodactylus gracilis     | Adults                           | 2.5                          |                              | Moreira et al. 2015            |
| Leptodactylus latrans      | Adults                           | 2.5                          |                              | Moreira et al. 2015            |
| Leptodactylus              | Adults                           | 6.4                          |                              | Andrade et al. 2012            |
| macrosternum               | ridans                           | 0.1                          |                              | Andrade et al. 2012            |
| Physalaemus biligonigerus  | Adults                           | 2.5                          |                              | Moreira et al. 2015            |
| Physalaemus gracilis       | Adults                           | 2.5                          |                              | Moreira et al. 2015            |
| Physalaemus henselii       | Adults                           | 2.5                          |                              | Moreira et al. 2015            |
| Pleurodema nebulosum       |                                  | 8                            | 10                           |                                |
|                            | Adults                           | 0                            | 10                           | Ruibal 1962                    |
| Limnodynastidae            | T                                | 4                            |                              | Smith et al 2007               |
| Limnodynastes dumerili     | Larvae                           | 4                            |                              | Smith et al. 2007              |
| Limnodynastes peronii      | Adults, larvae                   | 6                            |                              | Pyke et al. 2002               |
| Limnodynastes              | Larvae                           | 3.9                          |                              | Smith et al. 2007              |
| tasmaniensis               | -                                |                              |                              | a . 1 . 1                      |
| Neobatrachus sudelli       | Larvae                           | 2.64                         |                              | Smith et al. 2007              |
| Microhylidae               |                                  |                              |                              | _                              |
| Gastrophryne carolinensis  | Adults, eggs                     | 15                           |                              | Hardy 1953                     |
|                            | Larvae                           |                              | 5                            | Brown and Walls 2013           |
| Myobatrachidae             |                                  |                              |                              |                                |
| Crinia riparia             | Adults                           | 1.75                         |                              | Odendaal and Bull 1982         |
| Crinia signifera           | Adults                           | 0.85                         |                              | Odendaal and Bull 1982         |
| dontophrynidae             |                                  |                              |                              |                                |
| Odontophrynus maisuma      | Adults, eggs                     | 2.5                          |                              | Moreira et al. 2015            |
| Pelobatidae                | , 00                             |                              |                              |                                |
| Pelobates cultripes        | Adult                            | 35                           |                              | Thirion 2014                   |
| ····· /···                 | $\mathbf{E}\mathbf{g}\mathbf{g}$ |                              | 6                            | Thirion 2014                   |
| Pelobates fuscus           | Larvae, eggs                     | 0.6                          | 4                            | Stanescu et al. 2013           |
| Pelodytidae                |                                  |                              |                              |                                |
| Pelodytes punctatus        | Larvae                           | 9                            |                              | Thirion 2014                   |
| Pipidae                    |                                  | -                            |                              |                                |
| Xenopus laevis             | Juveniles                        |                              | 14                           | Munsey 1972                    |
| Ranidae                    | J = . 0                          |                              | ÷ *                          |                                |
| Lithobates berlandieri     | Adults                           | 39                           |                              | McCoid 2005                    |
| Lithobates catesbeianus    | Larvae                           | 55                           | 10                           | Brown and Walls 2013           |
| Lithobates clamitans       | Adults, eggs,                    | 0.59                         | 3.1                          | Collins and Russell 2009       |
| Linooues cuntutuns         | , 00 ,                           | 0.09                         | 0.1                          | Counts and Mussell 2009        |
| Lithohatan amilia          | larvae<br>Adults                 | 00 F                         |                              | Rios Lápoz 2002                |
| Lithobates grylio          |                                  | 20.5                         |                              | Rios-López 2008                |
| Lithobates pipiens         | Adults                           | 15                           | 10.0                         | Young 1924<br>Chaistean 1074   |
| Lithobates                 | Adults                           | 12.4                         | 10.8                         | Christman 1974                 |
| sphenocephalus             |                                  | -                            |                              |                                |
| Lithobates sylvaticus      | Adults                           | 2                            | _ ~                          | Ouellet et al. 2009            |
|                            | Larvae                           |                              | 7.5                          | Harless et al. 2011            |
| Lithobates yavapaiensis    | Adults, eggs                     | 9                            | 5                            | Ruibal 1959                    |
| Pelophylax perezi          | Adults, larvae                   | 28                           |                              | Sillero and Ribeiro 2010       |
|                            | Eggs                             |                              | 1                            | Ortiz-Santaliestra et al. 2010 |
| Pelophylax ridibundus      | Adults                           | 4                            |                              | Beadle 1943                    |
| - F - J                    | Adults                           | -                            | 8.8                          | Katz 1975                      |
| Pelophylax saharicus       | Adults, larvae,                  | 11                           |                              | Florentin 1899                 |
| L COPRIGNA SUMPRIS         |                                  | **                           |                              | 1.5.0Hull 1000                 |
| 1 5                        | eggs                             |                              |                              |                                |

|                                            |              | TABLE 5.—Continued           |                              |                      |  |
|--------------------------------------------|--------------|------------------------------|------------------------------|----------------------|--|
| Species                                    | Life stage   | Environmental salinity (ppt) | Experimental tolerance (ppt) | Reference            |  |
| Rana pretiosa                              | Adults       | 7.6                          |                              | Brues 1932           |  |
| Rana temporaria                            | Eggs         | 4                            |                              | Florentin 1899       |  |
|                                            |              |                              | 4.5                          | Viertel 1999         |  |
| Rhacophoridae                              |              |                              |                              |                      |  |
| Buergeria japonica                         | Adults, eggs | 2                            |                              | Haramura 2004, 2011  |  |
| 0 51                                       | Eggs         |                              | 1                            | Haramura 2007a       |  |
| Polypedates megacephalus<br>Scaphiopodidae | Larvae       |                              | 6.6                          | Karraker et al. 2010 |  |
| Spea hammondii                             | Adults       | 7.4                          |                              | Brues 1932           |  |

TABLE 3.—Continued.

gene flow, altered migration, and inbreeding depression due to habitat fragmentation and degradation from multiple stressors, may limit the evolutionary responsiveness of these populations (Bell 2013; Brady 2013). These processes can result in maladapted vs. locally adapted populations, as has been found in Wood Frogs (Lithobates sylvatica) inhabiting anthropogenically salted roadside ponds (Brady 2013). These populations continue to persist, however; thus, while the animals may experience lower survival, increased malformations, etc. in their home roadside environment (Brady 2013), this also does not necessarily preclude them from inhabiting this habitat. Spotted Salamanders (Ambystoma maculatum) also appear to be able to locally adapt to increased salinity in these same ponds (Brady 2012), and Wood Frog populations have been found elsewhere inhabiting saline environments such as tidal marshes (Table 1; Ouellet et al. 2009). These limitations to adaptation thus appear to be species-, population-, and habitat-specific, and more work is needed to be able to predict the responses of populations to salinity.

A final limit to adaptation, especially relevant in anthropogenically altered saline habitats, is the chemical nature of the salt and the evolutionary history amphibians have in regulating it. Several amphibian species, otherwise somewhat tolerant of NaCl, have been found to be susceptible to non-NaCl-based salts such as MgCl<sub>2</sub> (Dougherty and Smith 2006; Harless et al. 2011). In Rough-Skinned Newts (*Taricha* granulosa), significant interfamily variation exists in egg

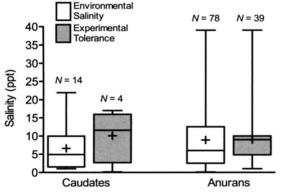



FIG. 7.—Maximum salinity concentrations (ppt  $Cl^-$ ) measured in the field where amphibians were observed (white bars) and maximum salt tolerance limits measured in the lab (gray bars) for caudates and anurans (see Methods text for full definition of tolerance). The range of concentrations is displayed (minimum to maximum error bars). Upper and lower box limits represent 3rd (75th percentile) and 1st (25th percentile) quartiles, respectively, with the line in the box representing the median (2nd quartile). Means are shown as plus (+) symbols. N numbers indicate the number of species examined.

survival in response to both NaCl and MgCl<sub>2</sub>, which affect eggs similarly (Hopkins et al. 2013b). However, larval survival is significantly lower in MgCl<sub>2</sub> than in NaCl (Hopkins et al. 2014), as has been found in anuran tadpoles (Dougherty and Smith 2006; Harless et al. 2011). It appears that eggs do not have substantial osmoregulatory ability and therefore are equally affected by both salts, whereas larvae have the ability to regulate  $Na^+$ , but not  $Mg^{2+}$ , through gill and integumentary Na<sup>+</sup> pumps (Hopkins et al. 2014). This probably reflects the long evolutionary history that amphibians have with NaCl, but not MgCl<sub>2</sub>, in various naturally saline habitats around the world (Drever 1997). Na<sup>+</sup>, but not  $Mg^{2+}$ , also has a long evolutionary history as being one of the most-common vertebrate osmolytes (Shoemaker and Nagy 1977). Thus, it appears that the adaptive ability of amphibians to particular types of salt may be limited by their physiological means of regulating the salt in question, a product of their evolutionary history with the chemical (Hopkins et al. 2014). This has particularly important consequences for the ability of amphibians to adapt to anthropogenic sources of salt, such as road deicing salts, which are often increasingly not NaCl-based (e.g., Harless et al. 2011). MgCl<sub>2</sub> is now the second most-commonly used road deicing salt in North America (National Transportation Research Board 2007) and is used exclusively in some regions. Amphibian populations in these areas may thus be constrained in their ability to adapt to this evolutionarily more "foreign" salt. Future management decisions regarding the selection and application of road deicing salts should take into account this evolutionary perspective (Hopkins et al. 2014).

#### CONCLUSIONS

Salt tolerance has evolved in over 100 amphibian species around the world as populations have adapted to exploit coastal and inland saline habitats. The known number of salttolerant or salt-adapted species continues to grow rapidly (i.e., 20 since 2013) as we examine amphibian adaptation to both natural and anthropogenic sources of salt. We now understand salinity tolerance in over a dozen species around the world to a similar extent as well-known examples such as *Fejervarya cancrivora* and *Bufotes viridis*. Despite this progress, the vast majority of species and families have still not been examined in any depth, and we know very little about salt tolerance and physiological adaptations in most amphibians. More research is needed, especially on understudied groups (such as caecilians and caudates) and life stages (such as eggs), and in areas outside of North America. With over 7200 amphibian species, the number of known salt- tolerant species (144) remains relatively small. However, it is also evident that, while amphibians are osmotically sensitive, they are not helpless, and many are certainly capable of evolving and adapting to saline habitats around the world. As researchers begin to appreciate this worldwide phenomenon, we anticipate that many more salt-tolerant species and populations will be revealed. We encourage biologists to contact us regarding these findings so this review may be updated in the future.

While we have established that salt tolerance in amphibians is not as rare as previously thought, our understanding of how such tolerance evolves is still in its infancy. Populations appear to be able to adapt through exploiting existing genetic variation in salt tolerance in osmotically stressful, unpredictable environments. However, most species have not been examined in an evolutionary light, and we still know very little regarding the genetic nature of salinity tolerance, the variation in tolerance that might exist within populations, and selective pressures, including ecological interactions and the temporal nature of selection events, which might lead to adaptation. Finally, as habitats become increasingly impacted by anthropogenic change, including salinization, it is important to understand what might limit salinity adaptation in amphibians as well as why some populations or species may struggle to evolve and/or be constrained by their evolutionary history. This evolutionary perspective, where we seek to understand the factors that regulate the abilities (and constraints) of populations to evolve, is critical both in looking back at those "Indian toads... haunting the seaside" (Darwin 1872) and forward at those species facing new saline stressors, whether they be road deicing salts, landscape modification, or the formation of new seaside haunts as sea levels rise in a changing world.

Acknowledgments.—Research on amphibian salinity adaptation in the Brodie and French labs has been supported by the Utah State University Department of Biology and Ecology Center, the Society for Northwestern Vertebrate Biology, and a fellowship from the Natural Sciences and Engineering Research Council of Canada to GRH. We thank S.S. French for additional support and A.H. Savitzky, M.L. Crump, S.S. French, and Z.M. Hopkins for providing valuable comments on an earlier version of the manuscript. We are grateful to M. Koo (AmphibiaWeb) for assistance with Fig. 1 and to I. Gomez-Mestre, I. Sazima, C-S. Wu, S. Brady, and M. Hoogmoed for the kind permission to use and reprint their photos in Figures 2, 3, and 5. All other photos were used under Creative Commons license from Wikimedia or Flickr. Finally, we thank I. Gomez-Mestre, M. Harvey, and three anonymous reviewers for their valuable comments and ideas to improve the manuscript and A. Durso and T. Grant for providing information on species.

#### LITERATURE CITED

- Abe, S., and E.P.W. Bicudo. 1991. Adaptations to salinity and osmoregulation in the frog *Thoropa miliaris* (Amphibia, Leptodactylidae). Zoologischer Anzeiger 227: 5–6.
- Alcala, A.C. 1962. Breeding behavior and early development of frogs of Negros, Philippine Islands. Copeia 1962: 679–726.
- Alexander, L.G., S.P. Lailvaux, J.H.K. Pechmann, and P.J. De Vries. 2012. Effects of salinity on early life stages of the Gulf Coast toad, *Incilius nebulifer* (Anura: Bufonidae). Copeia 2012: 106–114.
- Allen, M.J. 1932. A survey of the amphibians and reptiles of Harrison County, Mississippi. American Museum Novitates 542: 1-20.
- Alvarado, R.H., and T.H. Dietz. 1970a. Effect of salt depletion on hydromineral balance in larval *Ambystoma gracile*: I. Ionic composition. Comparative and Biochemical Physiology 33: 85–92.

- Alvarado, R.H., and T.H. Dietz. 1970b. Effect of salt depletion on hydromineral balance in larval Ambystoma gracile: II. Kinetics of ion exchange. Comparative and Biochemical Physiology 33: 93–110.
- Alvarado, R.H., and A. Moody. 1970. Sodium and chloride transport in tadpoles of the bullfrog *Rana catesbeiana*. American Journal of Physiology 218: 1510–1516.
- Alvarez-León, R., and R.M. De Ayala-Monedero. 2000. Frogs associated to the swamps of the Colombian Caribbean. Revista de Biología Tropical 48: 724.
- Andrade, E.B., T.B.L. Júnior, J.M.A.L. Júnior, and J.R.S.A. Leite. 2012. Predation by native fish and feeding by crab species on *Leptodactylus macrosternum* Mirando-Ribeiro, 1926 (Anura: Leptodactylidae) in northeastern Brazil. Herpetology Notes 5: 173–175.
- Annandale, N. 1907. The fauna of brackish ponds at Port Canning, Lower Bengal. Records of the Indian Museum (A Journal of Indian Zoology) 1: 35–43.
- Asem, A., A. Eimanifar, M. Djamali, P. De los Rios, and M. Wink. 2014. Biodiversity of the hypersaline Urmia Lake National Park (NW Iran). Diversity 6: 102–132.
- Badyaev, A.V. 2005. Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proceedings of the Royal Society B 272: 877–886.
- Bahmani, Z., R. Karamiani, N. Rastergar-Pouyani, A. Gharzi, and R.K. Browne. 2014. The amphibian fauna of Kurdistan Province, Western Iran. Amphibian and Reptile Conservation 9: 31–35.
- Balinsky, J.B. 1981. Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia. Journal of Experimental Zoology 215: 335–350.
- Barrett, R.D.H., and D. Schluter. 2007. Adaptation from standing genetic variation. Trends in Ecology and Evolution 23: 38–44.
- Beadle, L.C. 1943. An ecological survey of some inland saline waters of Algeria. Journal of the Linnean Society of London, Zoology 43: 218–242.
- Beebee, T.J.C. 1985. Salt tolerances of natterjack toad (*Bufo calamita*) eggs and larvae from coastal and inland populations in Britain. Herpetological Journal 1: 14–16.
- Bell, G. 2013. Evolutionary rescue and the limits of adaptation. Philosophical Transactions of the Royal Society B 368: 1–6.
- Bell, T. 1843. Reptiles. Elder and Co., UK.
- Bellairs, A., and C.C.D. Shute. 1954. Notes on the herpetology of an Algerian beach. Copeia 1954: 224–226.
- Bernabò, I., A. Bonacci, F. Coscarelli, M. Tripepi, and E. Brunelli. 2013. Effects of salinity stress on *Bufo balearicus* and *Bufo bufo* tadpoles: Tolerance, morphological gill alterations and Na<sup>+</sup>/K<sup>+</sup>-ATPase localization. Aquatic Toxicology 132–133: 119–133.
- Boss, H., and T. Chesnes. 2014. Siren lacertina. (Greater Siren) habitat. Herpetological Review 45: 302.
- Boulenger, G.A. 1897–1898. The Tailless Batrachians of Europe. The Ray Society, UK.
- Boulenger, G.A. 1912. A Vertebrate Fauna of the Malay Peninsula from the Isthmus of Kra to Singapore Including the Adjacent Islands: Reptilia and Batrachia. Taylor and Francis, UK.
- Boulenger, G.A. 1920a. British batrachians. Proceedings of the South London Entomological and Natural History Society 1919–1921: 23–31.
- Boulenger, G.A. 1920b. A monograph of the South Asian, Papuan, Melanesian, and Australian frogs of the genus *Rana*. Records of the Indian Museum (A Journal of Indian Zoology) 20: 1–226.
- Brady, S.P. 2012. Road to evolution? Local adaptation to road adjacency in an amphibian (*Ambystoma maculatum*). Scientific Reports 2: 1–5. DOI: 10.1038/srep00235.
- Brady, S.P. 2013. Microgeographic maladaptive performance and deme depression in response to roads and runoff. PeerJ 1: e163. DOI: http://dx. doi.org/10.7717/peerj.163
- Brand, A., J.W. Snodgrass, M.T. Gallagher, R.E. Casey, and R. Van Meter. 2010. Lethal and sublethal effects of embryonic and larval exposure of *Hyla versicolor* to stormwater pond sediments. Archives of Environmental Contamination and Toxicology 58: 325–331.
- Brandon, R.A., E.J. Maruska, and W.T. Rumph. 1981. A new species of neotenic Ambystoma (Amphibia, Caudata) endemic to Laguna Alchichica, Puebla, Mexico. Bulletin of the Southern California Academy of Sciences 80: 112–125.
- Brasileiro, C.A., M. Martins, and I. Sazima. 2010. Feeding ecology of *Thoropa taophora* (Anura: Cycloramphidae) on a rocky seashore in southeastern Brazil. South American Journal of Herpetology 5: 181–188.
- Brown, M.E., and S.C. Walls. 2013. Variation in salinity tolerance among larval anurans: Implications for community composition and the spread of an invasive, non-native species. Copeia 2013: 543–551.

- Brown, R.M., C.D. Siler, C.H. Oliveros, and A.C. Diesmos. 2013. The amphibians and reptiles of Luzon Island, Philippines, VIII: The herpetofauna of Cagayan and Isabela Provinces, northern Sierra Madre Mountain Range. ZooKeys 266: 1–120.
- Brues, C.T. 1932. Studies on the fauna of North American hot springs. Proceedings of the American Academy of Arts and Sciences 67: 185–303.
- Burger, W.L., P.W. Smith, and H.M. Smith. 1949. Notable records of reptiles and amphibians in Oklahoma, Arkansas, and Texas. Journal of the Tennessee Academy of Sciences 24: 130–134.
- Cañedo-Argülles, M., B.J. Kefford, C. Piscart, N. Prat, R.B. Schäfer, and C.-J. Schulz. 2013. Salinization of rivers: An urgent ecological issue. Environmental Pollution 173: 157–167.
- Carl, G.C. 1949. Extensions of known ranges of some amphibians in British Columbia. Herpetologica 5: 139.
- Cei, J.M. 1955. Chacoan batrachians in central Argentina. Copeia 1955: 291–293.
- Chakko, G. 1968. Salinity tolerances in some south Indian anurans. Proceedings of the Indian Academy of Sciences B 67: 233-236.
- Chambers, D.L. 2011. Increased conductivity affects corticosterone levels and prey consumption in larval amphibians. Journal of Herpetology 45: 219–223.
- Chan, S.H., and C. Goh. 2010. Frogs of Sungei Buoh wetland reserve (Amphibia: Anura). Nature in Singapore 3: 103–116.
- Chinathamby, K., R.D. Reina, P.C.E. Bailey, and B.K. Lees. 2006. Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog, *Litoria ewingii*. Australian Journal of Zoology 54: 97–105.
- Christman, S.P. 1974. Geographic variation for salt water tolerance in the frog Rana sphenocephala. Copeia 1974: 773–778.
- Christy, M.T., and C.R. Dickman. 2002. Effects of salinity on tadpoles of the green and golden bell frog (*Litoria aurea*). Amphibia-Reptilia 23: 1–11.
- Collins, S.J., and R.W. Russell. 2009. Toxicity of road salt to Nova Scotia amphibians. Environmental Pollution 157: 320-324.
- Crawford, S.C., and E.P. Jones. 1933. Field notes on some amphibians from British Guiana. Copeia 2: 88–92.
- Crump, M.L. 2002. Natural history of Darwin's frog, *Rhinoderma darwinii*. Herpetological Natural History 9: 21–30.
- Darwin, C. 1834. Beagle animal notes. Pp. 186–187 in Charles Darwin's Zoology Notes and Specimen Lists from H.M.S. Beagle. R. Keynes (Ed.). Cambridge University Press, UK.
- Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Murray, UK.
- Darwin, C. 1872. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 6th ed. Murray, UK.
- Darwin, C. 1876. Letter 391. To A.R. Wallace. Pp. 16 in More Letters of Charles Darwin: A Record of his Work in a Series of Hitherto Unpublished Letters. F. Darwin and A.C. Seward (Eds.). Murray, UK.
- Davenport, J.M., and K.K. Huat. 1997. Salinity tolerance and preference in the frog *Rana rugulosa* Wiegmann. Herpetological Journal 7: 114–115.
- Decksbach, N. 1922. Die Salzwassertierwelt Mittelrusslands. Archiv füer Hydrobiologie 14: 191–195.
- Degani, G. 1981. Salinty tolerance and osmoregulation in Salamandra salamandra (L.) from different populations. Journal of Comparative Physiology 145: 133–137.
- Degani, G., N. Silanikove, and A. Shkolnik. 1984. Adaptation of green toad (*Bufo viridis*) to terrestrial life by urea accumulation. Comparative and Biochemical Physiology 77A: 585–587.
- Delson, J., and W.G. Whitford. 1973. Adaptation of the tiger salamander, *Ambystoma tigrinum*, to arid habitats. Comparative and Biochemical Physiology 46A: 631–638.
- Diener, R.A. 1965. The occurrence of tadpoles of the green treefrog, *Hyla cinerea cinerea* (Schneider) in Trinity Bay, Texas. British Journal of Herpetology 3: 198–199.
- Dougherty, C.K., and G.R. Smith. 2006. Acute effects of road de-icers on the tadpoles of three anurans. Applied Herpetology 3: 87–93.
- Downie, J.R., E.G. Hancock, and A.P. Muir. 2010. The diet of the paradoxical frog *Pseudis paradoxa* in Trinidad, West Indies. Herpetological Journal 20: 111-114.
- Drever, J.I. 1997. The Geochemistry of Natural Waters: Surface and Groundwater Environments. Prentice Hall, USA.
- Duellman, W.E., and A. Schwartz. 1958. Amphibians and reptiles of southern Florida. Bulletin of the Florida State Museum 3: 181–324.
- Duerr, F.G., and G.C. Ness. 1970. Non-protein-nitrogen levels and nitrogen excretion by *Ambystoma tigrinum* from saline lakes. American Zoologist 10: 287–326.

- Duff, J.P., K. Colvile, J. Foster, and N. Dumphreys. 2011. Mass mortality of great crested newts (*Triturus cristatus*) on ground treated with road salt. Veterinary Record 168: 282.
- Dunson, W.A. 1977. Tolerance to high temperature and salinity by tadpoles of the Philippine frog, *Rana cancrivora*. Copeia 1977: 375–378.
- El Hamoumi, R., M. Dakki, and M. Thevenot. 2007. Etude écologique des larves d'anoures du Maroc. Bulletin de l'Institut Scientifique, Rabat, Section Sciences de la Vie 29: 27–34.
- Ely, C. 1944. Development of *Bufo marinus* larvae in dilute sea water. Copeia 1944: 256.
- Engels, W.L. 1952. Vertebrate fauna of North Carolina coastal islands II: Shackleford Banks. American Midland Naturalist 47: 702–742.
- Environment Canada. 2001. Priority Substances List Assessment Report: Road Salts. Environment Canada, Canada.
- Ferguson, D.E. 1956. Notes on the occurrence of some Oregon salamanders close to the Ocean. Copeia 1956: 120.
- Ferreira, R.B., and J.F.R.T. Tonini. 2010. Living holed: Leptodactylus latrans occupying crabs' burrows. Herpetology Notes 3: 237–238.
- Florentin, M.R. 1899. Études sur la faune des mares salées de Lorraine. Docteur des Sciences Naturelles dissertation, Université de Nancy, France.
- Frost, D.R. 2014. Amphibian species of the world: An online reference. American Museum of Natural History, USA. Available at http://research. amnh.org/vz/herpetology/amphibia/index.php. Archived by WebCite at http://www.webcitation.org/6U0q9vUeU on 11 November 2014.
- Gadow, H. 1901. Amphibia and reptiles. Cambridge Natural History 8: 1–668.
- Gallagher, M.T., J.W. Snodgrass, A.B. Brand, R.E. Casey, S.M. Lev, and R.J. Van Meter. 2014. The role of pollutant accumulation in determining the use of stormwater ponds by amphibians. Wetlands Ecology and Mangement 22: 551–564.
- Gasser, K.W., and B.T. Miller. 1986. Osmoregulation of larval blotched tiger salamanders, *Ambystoma tigrinum melanostictum*, in saline environments. Physiological Zoology 59: 643–648.
- Gislén, T., and H. Kauri. 1959. Zoogeography of the Swedish amphibians and reptiles with notes on their growth and ecology. Acta Vertebratica 1: 197–397.
- Glorioso, B.M., J.H. Waddle, M.E. Crockett, K.G. Rice, and H.F. Percival. 2012. Diet of the invasive Cuban Treefrog (Osteopilus septentrionalis) in pine rockland and mangrove habitats in South Florida. Caribbean Journal of Science 46: 346–355.
- Goin, C.J. 1953. Rediscovery of the frog *Litoria luteola* Gosse in Jamaica. Occasional Papers of the Museum of the Institute of Jamaica 7: 1–4.
- Gomez-Mestre, I., and M. Tejedo. 2003. Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 57: 1889– 1899.
- Gomez-Mestre, I., and M. Tejedo. 2004. Contrasting patterns of quantitative and neutral genetic variation in locally adapted populations of the natterjack toad, *Bufo calamita*. Evolution 58: 2243–2352.
- Gomez-Mestre, I., and M. Tejedo. 2005. Adaptation or exaptation? An experimental test of hypotheses on the origin of salinity tolerance in *Bufo calamita*. Journal of Evolutionary Biology 18: 847–855.
- Gomez-Mestre, I., M. Tejedo, E. Ramayo, and J. Estepa. 2004. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress. Physiological and Biochemical Zoology 77: 267–274.
- Gordon, M.S. 1962. Osmotic regulation in the green toad (Bufo viridis). Journal of Experimental Biology 39: 261–270.
- Gordon, M.S., and V.A. Tucker. 1965. Osmotic regulation in the tadpoles of the crab-eating frog (*Rana cancrivora*). Journal of Experimental Biology 42: 437–445.
- Gordon, M.S., and V.A. Tucker. 1968. Further observations on the physiology of salinity adaptation in the crab-eating frog (*Rana cancrivora*). Journal of Experimental Biology 49: 185–193.
- Gordon, M.S., K. Schmidt-Nielsen, and H.M. Kelly. 1961. Osmotic regulation in the crab-eating frog (*Rana cancrivora*). Journal of Experimental Biology 38: 659–678.
- Goris, C.R., and N. Maeda. 2005. Guide to the Amphibians and Reptiles of Japan. Krieger Publishing Company, USA.
- Gornitz, V. 1995. Sea-level rise: A review of recent past and near-future trends. Earth Surface Processes and Landforms 20: 7–20.
- Gosner, K.L., and I.H. Black. 1957. The effects of acidity on the development and hatching of New Jersey frogs. Ecology 38: 256–262.
- Grant, C. 1932. Herpetology of Tortola: Notes on Anegada and Virgin Gorda, British Virgin Islands. Journal of the Department of Agriculture, Puerto Rico 16: 339–346.

Grant, C. 1939. Additional data on Jamaican snakes of the genus *Dromicus*. Copeia 1939: 105–106.

- Guix, J.C., and R.M. Lopes. 1989. Occurrence of *Hyla geographica* Spix and *Bufo crucifer* Wied tadpoles in brackish water environments in the Juréia region (Sao Paulo, SE Brazil). Amphibia-Reptilia 10: 185–192.
- Gunter, G. 1956. Some relations of faunal distributions to salinity in estuarine waters. Ecology 37: 616–619.
- Gunzburger, M.S., W.B. Hughes, W.J. Barichivich, and J.S. Staiger. 2010. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida. Wetlands Ecology and Mangement 18: 651–663.
- Hagström, T. 1981. Tadpoles of the common toad (*Bufo bufo* L.) found in brackish water. Amphibia-Reptilia 2: 187–188.
- Hamer, A.J., S.J. Lane, and M. Mahony. 2002. Management of freshwater wetlands for the endangered green and golden bell frog (*Litoria aurea*): Roles of habitat determinants and space. Biological Conservation 106: 413–424.
- Hammer, U.T. 1986. Saline Lake Ecosystems of the World. Dr. W. Junk Publishers, the Netherlands.
- Hansen, R.W., D.B. Wake, and G.M. Fellers. 2005. Batrachoseps pacificus (Cope, 1985): Species Account. Pp. 685–686 in Amphibian Declines: The Conservation Status of United States Species. M. Lannoo (Ed.). University of California Press, USA.
- Haramura, T. 2004. Salinity and other abiotic characteristics of oviposition sites of the rhacophorid frog, *Buergeria japonica*, in coastal habitat. Current Herpetology 23: 81–84.
- Haramura, T. 2007a. Salinity tolerance of eggs of *Buergeria japonica* (Amphibia, Anura) inhabiting coastal areas. Zoological Science 24: 820–823.
- Haramura, T. 2007b. Microhabitat selection by tadpoles of *Buergeria japonica* inhabiting the coastal area. Journal of Ethology 25: 3–7.
- Haramura, T. 2008. Experimental test of spawning site selection by *Buergeria japonica* (Anura: Rhacophoridae) in response to salinity level. Copeia 2008: 64–67.
- Haramura, T. 2011. Use of oviposition sites by a Rhacophorid frog inhabiting a coastal area of Japan. Journal of Herpetology 45: 432–437.
- Hardy, E. 1943. Newt larvae in brackish water (reply). Nature 151: 226. Hardy, J.D., Jr. 1952. A concentration of juvenile spotted salamanders, *Ambystoma maculatum* (Shaw). Copeia 1952: 181–182.
- Hardy, J.D., Jr. 1953. Notes on the distribution of *Mycrohyla carolinensis* in southern Maryland. Herpetologica 8: 162–166.
- Hardy, J.D., Jr. 1972. Amphibians of the Chesapeake Bay region. Chesapeake Science 13: S123–S128.
- Harless, M.L., C.J. Huckins, J.B. Grant, and T.G. Pypker. 2011. Effects of six chemical deicers on larval wood frogs (*Rana sylvatica*). Environmental Toxicology and Chemistry 30: 1637–1641.
- Hedges, S.B., and R. Thomas. 1992. A new marsh-dwelling species of *Eleutherodactylus* from Haiti (Anura: Leptodactylidae). Journal of Herpetology 26: 191–195.
- Held, J.W., and J.J. Peterka. 1974. Age, growth and food habits of the fathead minnow, *Pimephales promelas*, in North Dakota saline lakes. Transactions of the American Fisheries Society 103: 743-756.
- Hoffman, J. 2014. Physiological response of *Bufo viridis* (Laurenti, 1768) populations across an aridity gradient. Alytes 30: 33–41.
- Hoogmoed, M.S., A.O. Maciel, and J.T. Coragem. 2011. Discovery of the largest lungless tetrapod, *Atretochoana eiselti* (Taylor, 1968) (Amphibia: Gymnophiona: Typhlonectidae), in its natural habitat in Brazilian Amazonia. Boletim do Museu Paraense Emilio Goeldi Ciências Naturais 6: 241–262.
- Hopkins, G.R., and Z.M. Hopkins. In press. Salty salamander: Occurrence of a *Dicamptodon tenebrosus* in a tidal stream. Northwestern Naturalist 96(2).
- Hopkins, G.R., S.S. French, and E.D. Brodie Jr. 2013a. Increased frequency and severity of developmental deformities in rough-skinned newt (*Taricha* granulosa) embryos exposed to road deicing salts (NaCl & MgCl2). Environmental Pollution 173: 264–269.
- Hopkins, G.R., S.S. French, and E.D. Brodie Jr. 2013b. Potential for local adaptation in response to an anthropogenic agent of selection: Effects of road deicing salts on amphibian embryonic survival and development. Evolutionary Applications 6: 384–392.
- Hopkins, G.R., E. Brodie Jr., and S.S. French. 2014. Developmental and evolutionary history affect survival in stressful environments. PLoS One 9: e95174. DOI: 10.1371/journal.pone.0095174.
- Hovingh, P. 1993. Aquatic habitats, life history observations, and zoogeographic considerations of the spotted frog (*Rana pretiosa*) in Tule Valley, Utah. Great Basin Naturalist 53: 168–179.

- Hua, J., and B.A. Pierce. 2013. Lethal and sublethal effects of salinity on three common Texas amphibians. Copeia 2013: 562–566.
- Janicke, G., and J.D. Roberts. 2010. *Litoria cyclorhyncha* saline habitat. Herpetological Review 41: 199–200.
- Jena, S.C., S.K. Palita, and M.K. Mahapatra. 2013. Anurans of Bhitarkanika mangroves, Odisha, east coast of India. Check List 9: 400–404.
- Jones, R.M., and S.S. Hillman. 1978. Salinity adaptation in the salamander Batrachoseps. Journal of Experimental Biology 76: 1-10.
- Karraker, N.E. 2007. Are embryonic and larval green frogs (*Rana clamitans*) insensitive to road deicing salt? Herpetological Conservation and Biology 2: 35–41.
- Karraker, N.E., and J.P. Gibbs. 2011. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches. Environmental Pollution 159: 833–835.
- Karraker, N.E., and G.R. Ruthig. 2009. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds. Environmental Research 109: 40–45.
- Karraker, N.E., J.P. Gibbs, and J.R. Vonesh. 2008. Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecological Applications 18: 724–734.
- Karraker, N.E., J. Arrigoni, and D. Dudgeon. 2010. Effects of increased salinity and an introduced predator on lowland amphibians in southern China: Species identity matters. Biological Conservation 143: 1079–1086.
- Katz, U. 1973. Studies on the adaptation of the toad *Bufo viridis* to high salinities: Oxygen consumption, plasma concentration and water content of the tissues. Journal of Experimental Biology 58: 785–796.
- Katz, U. 1975. NaCl adaptation in *Rana ridibunda* and a comparison with the euryhaline toad *Bufo viridis*. Journal of Experimental Biology 63: 763– 773.
- Katz, U. 1989. Strategies of adaptation to osmotic stress in anuran amphibia under salt and burrowing conditions. Comparative and Biochemical Physiology 93A: 499–503.
- Kaushal, S.S., P.M. Groffman, G.E. Likens, K.T. Belt, W.P. Stack, V.R. Kelly, L.E. Band, and G.T. Gisher. 2005. Increased salinization of fresh water in the northeastern United States. Proceedings of the National Academy of Sciences of the United States of America 102: 13517–13520.
- Kearney, B.D., P.G. Byrne, and R.D. Reina. 2012. Larval tolerance to salinity in three species of Australian anuran: An indication of saline specialisation in *Litoria aurea*. PLoS One 7: e43427. DOI: 10.1371/ journal.pone.0043427.
- Kearney, B.D., R.J. Pell, P.G. Byrne, and R.D. Reina. 2014. Anuran larval developmental plasticity and survival in response to variable salinity of ecologically relevant timing and magnitude. Journal of Experimental Zoology A 321: 541–549,
- Kirschner, L.B., T. Kerstetter, D. Porter, and R.H. Alvarado. 1971. Adaptation of larval Ambystoma tigrinum to concentrated environments. American Journal of Physiology 220: 1814–1819.
- Kiviat, E., and J. Stapleton. 1983. Bufo americanus. (American toad) estuarine habitat. Herpetological Review 14: 46.
- Klemens, M.W., E. Kiviat, and R.E. Schmidt. 1987. Distribution of the northern leopard frog, *Rana pipiens*, in the lower Hudson and Housatonic river valleys. Northeastern Environmental Science 6: 99–101.
- Knoepffler, L.P. 1962. Contribution à l'étude du genre Discoglosus (Amphibiens, Anoures). Vie et Milieu 12: 1–94.
- La Rivers, I. 1948. Some Hawaiian ecological notes. The Wasmann Collector 7: 85–110.
- Langhans, M., B. Peterson, A. Walker, G.R. Smith, and J.E. Rettig. 2009. Effects of salinity on survivorship of wood frog (*Rana sylvatica*) tadpoles. Journal of Freshwater Ecology 24: 335–336.
- Larson, D.W. 1968. The occurrence of neotenic salamanders, *Ambystoma tigrinum diaboli* Dunn, in Devils Lake, North Dakota. Copeia 1968: 620–621.
- Licht, P., M.E. Feder, and S. Bledsoe. 1975. Salinity tolerance and osmoregulation in the salamander *Batrachoseps*. Journal of Comparative Physiology 102: 123–134.
- Liggins, G.W., and G.C. Grigg. 1985. Osmoregulation of the Cane toad, *Bufo marinus*, in salt water. Comparative and Biochemical Physiology 82A: 613–619.
- Lynn, W.G. 1957. Notes on a collection of reptiles and amphibians from Antigua, B.W.I. Herpetologica 13:53–56.
- Margalef, R. 1956. La vida en las aguas de elevado residuo salino de la provincia de Zamora. Publicaciones del Instituto de Biología Aplicada 26: 123–137.
- Matlaga, T.H., C.A. Phillips, and D.J. Soucek. 2014. Insensitivity to road salt: An advantage for the American bullfrog? Hydrobiologia 721: 1–8.

- Matos-Torres, J.J. 2006. Habitat characterization for the Puerto Rican Crested Toad (Peltophryne [Bufo] lemur) at Guánica State Forest, Puerto Rico, M.S. thesis, University of Puerto Rico, Puerto Rico,
- McBean, R.L., and L. Goldstein. 1967. Ornithine-urea cycle activity in Xenopus laevis: Adaptation in saline. Science 157: 931-932.
- McCoid, M.J. 2005. Rana berlandieri salinity tolerance. Herpetological Beview 36: 437-438.
- Measey, G.J., M. Vences, R.C. Drewes, Y. Chiari, M. Melo, and B. Bourles. 2007. Freshwater paths across the ocean: Molecular phylogeny of the frog Ptuchadena newtoni gives insights into amphibian colonization of oceanic islands. Journal of Biogeography 34: 7-20.
- Mertens, R. 1926. Amphibia, Reptilia. Die Tierwelt der Nord-und Ostee 12: 1 - 20.
- Mester, B., N.J. Cozma, and M. Puky. 2013. First observation of facultative paedomorphosis in the Danube crested newt (Triturus dobrogicus Kiritzescu, 1903) and the occurrence of facultative paedomorphosis in two newt species from soda pans of the Danube-Tisza Interfluve (Kiskunság National Park, Hungary). North-Western Journal of Zoology 9:443-445
- Mokany, A., and R. Shine. 2003. Oviposition site selection by mosquitoes is affected by cues from conspecific larvae and anuran tadpoles. Austral Ecology 28: 33-37.
- Moreira, L.F.B., D.S. Knauth, and L. Maltchik. 2015. Intermittently closed estuaries and tadpole communities: Influence of artificial breaching. Estuaries and Coasts 38: 979-987.
- Mueller, A.J. 1985. Vertebrate use of nontidal wetlands on Galveston Island, Texas. Texas Journal of Science 37: 215-225.
- Munsey, L.D. 1972. Salinity tolerance of the African pipid frog, Xenopus laevis. Copeia 1972: 584-586.
- Muralidhar, P., F.P. De Sá, C.F.B. Haddad, and K.R. Zamudio. 2014. Kinbias, breeding site selection and female fitness in a cannibalistic Neotropical frog. Molecular Ecology 23: 453-463.
- Murray, K.F. 1955. Herpetological collections from Baja California. Herpetologica 11: 33-48.
- National Transportation Research Board. 2007. Guidelines for the Selection of Snow and Ice Control Materials to Mitigate Environmental Impacts. National Cooperative Highway Research Program Report 577. National Cooperative Highway Research Program, USA.
- Neill, W.T. 1958. The occurrence of amphibians and reptiles in saltwater areas, and a bibliography. Bulletin of Marine Science of the Gulf and Caribbean 8: 1-97.
- Nicholls, R.J., F.M.J. Hoozemans, and M. Marchand. 1999. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Global Environmental Change 9: S69-S87.
- Nöllert, A., and C. Nöllert. 1992. Die Amphibien Europas. Franckh-Kosmos
- Verlags-GmbH and Company, Germany. Odendaal, F.J., and C.M. Bull. 1982. A parapatric boundary between Ranidella signifera and R. riparia (Anura: Leptodactylidae) in South Australia. Australian Journal of Zoology 30: 49-57.
- Ortiz-Santaliestra, M.E., M.J. Fernández-Benéitez, M. Lizana, and A. Marco. 2010. Adaptation to osmotic stress provides protection against ammonium nitrate in Pelophylax perezi embryos. Environmental Pollution 158: 934-940.
- Ouellet, M., C. Fortin, and M.-J. Grimard. 2009. Distribution and habitat use of the Boreal Chorus Frog (Pseudacris maculata) at its extreme northeastern range limit. Herpetological Conservation and Biology 4: 277 - 284
- Padhye, A.D., and H.V. Ghate. 1992. Sodium chloride and potassium chloride tolerance of different stages of the frog, Microhyla ornata. Herpetological Journal 2: 18-23.
- Parsons, P.A. 2005. Environments and evolution: Interactions between stress, resource inadequacy and energetic efficiency. Biological Reviews 80: 589-610
- Pawling, R.O. 1939. The amphibians and reptiles of Union County, Pennsylvania. Herpetologica 1: 165-169.
- Pearse, A.S. 1911. Concerning the development of frog tadpoles in sea water. Phillippine Journal of Science 6: 219-220.
- Péfaur, J.E. 1984. A new species of Dendrobatid frog from the coast of Peru. Journal of Herpetology 18: 492-494.
- Peterson, H.W., R. Garrett, and J.P. Lantz. 1952. The mating period of the giant tree frog Hyla dominicensis. Herpetologica 8: 63.
- Petranka, J.W., and E.J. Doyle. 2010. Effects of road salts on the composition of seasonal pond communities: Can the use of road salts enhance mosquito recruitment? Aquatic Ecology 44: 155-166.

- Petranka, J.W., and R.A. Francis. 2013. Effects of road salts on seasonal wetlands: Poor prey performance may compromise growth of predatory salamanders. Wetlands 33: 707-715.
- Pombal, J.P., and Jr. 1993. New species of Aparashpenodon (Anura: Hylidae) from southeastern Brazil. Copeia 1993: 1088-1091.
- Ponssa, M.L., M.J. Jowers, and R.O. De Sá. 2010. Osteology, natural history notes, and phylogenetic relationships of the poorly known Caribbean frog Leptodactylus nesiotus (Anura: Leptodactylidae). Zootaxa 2646: 1-25.
- Purcell, K.M., A.T. Hitch, P.L. Klerks, and P.L. Leberg. 2008. Adaptation as a potential response to sea-level rise: A genetic basis for salinity tolerance in populations of a coastal marsh fish. Evolutionary Applications 1: 155-160.
- Pyefinch, K.A. 1937. The fresh and brackish waters of Bardsey Island (North Wales): A chemical and faunistic survery. Journal of Animal Ecology 6: 115 - 137.
- Pyke, G.H., A.W. White, P.J. Bishop, and B. Waldman. 2002. Habitat-use by the Green and Golden Bell Frog Litoria aurea in Australia and New Zealand. Australian Zoologist 32: 12-31.
- Pyke, G.H., S.T. Ahyong, A. Fuessel, and S. Callaghan. 2013. Marine crabs eating freshwater frogs: Why are such observations so rare? Herpetology Notes 6: 195-199.
- Rahman, M.R., and M. Asaduzzaman. 2010. Ecology of Sundarban, Bangladesh. Journal of Science Foundation 8: 35-47
- Reis, D.K. 1999. Habitat characteristics of California red-legged frogs (Rana aurora draytonii): Ecological differences between eggs, tadpoles, and adults in a coastal brackish and freshwater system. M.S. thesis, San Jose State University, USA.
- Rios-López, N. 2008. Effects of increased salinity on tadpoles of two anurans from a Caribbean coastal wetland in relation to their natural abundance. Amphibia-Reptilia 29: 7-18.
- Roberts, J.O. 1970. Variations in salinity tolerance in the Pacific treefrog, Hyla regilla, in Oregon. Ph.D. dissertation [unpublished], Oregon State University, USA.
- Romspert, A.P., and L.L. McClanahan. 1981. Osmoregulation of the terrestrial salamander, Ambystoma tigrinum in hypersaline media. Copeia 1981: 400-405
- Ruibal, R. 1959. The ecology of a brackish water population of Rana pipiens. Copeia 1959: 315-322.
- Ruibal, R. 1962. Osmoregulation in amphibians from heterosaline habitats. Physiological Zoology 35: 133-147.
- Samraoui, B., F. Samraoui, N. Benslimane, A. Alfarhan, and K.A.S. Al-Rasheid. 2012. A precipitous decline of the Algerian newt Pleurodeles poireti Gervais, 1835 and other changes in the status of amphibians of Numidia, north-eastern Algeria. Revue d'Écologie (Terre Vie) 67: 71–81.
- Sanzo, D., and S.J. Hecnar 2006. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environmental Pollution 140: 247–256.
- Sasa, M., G.A. Chaves, and L.D. Patrick. 2009. Marine reptiles and amphibians. Pp. 459-468 in Marine Biodiversity of Costa Rica, Central America. I.S. Wehrtmann and J. Cortés (Eds.). Springer, the Netherlands.
- Satheeshkumar, P. 2011. First record of a mangrove frog Fejervarya cancrivora (Amphibia: Ranidae) in the Pondicherry Mangroves, Bay of Bengal-India. World Journal of Zoology 6: 328-330.
- Sazima, I. 1971. The occurrence of marine invertebrates in the stomach contents of the frog Thoropa miliaris. Ciência e Cultura 23: 647-648.
- Schmidt, K.P. 1955. Amphibians and reptiles from Iran. Videnskabelige Meddeleser fra Dansk Naturhistorisk Forening 117: 193-207
- Shaw, T.-H. 1934. Notes on specimens of Radde's toad from Chefoo. The China Journal 20: 197-199.
- Shoemaker, V.H., and K.A. Nagy. 1977. Osmoregulation in amphibians and reptiles. Annual Reviews of Physiology 39: 449-471.
- Shoemaker, V.H., S.S. Hillman, S.D. Hillyard, D.C. Iackson, L.L. McClanahan, P.C. Withers, and M.L. Wygoda. 1992. Exchange of water, ions, and respiratory gases in terrestrial amphibians. Pp. 125–150 in Environmental Physiology of the Amphibians. M.E. Feder and W.W. Burggren (Eds.). University of Chicago Press, USA
- Sillero, N., and R. Ribeiro. 2010. Reproduction of Pelophylax perezi in brackish water in Porto (Portugal). Herpetology Notes 3: 337-340.
- Smith, H.M., and O. Sanders. 1952. Distributional data on Texan amphibians and reptiles. Texas Journal of Science 2: 204-219.
- Smith, J.J., and D.K. Reis. 1997. Pescadero Marsh Natural Preserve salinity, tidewater goby and red-legged frog monitoring for 1995-1996. Report number 3790-301-722(7), California Department of Parks and Recreation, San Jose State University, USA.
- Smith, M.A. 1927. Contributions to the herpetology of the Indo-Australian region. Proceedings of the Zoological Society of London 1927: 199-225.
- Smith, M.J., E.S.G. Schreiber, M.P. Scroggie, M. Kohout, K. Ough, J. Potts, R. Lennie, D. Turnbull, C. Jin, and T. Clancy. 2007. Associations between

anuran tadpoles and salinity in a landscape mosaic of wetlands impacted by secondary salinisation. Freshwater Biology 52: 75–84.

- Smith, P.W., and J.C. List. 1955. Notes on Mississippi amphibians and reptiles. American Midland Naturalist 53: 115–125.
- Snodgrass, J.W., R.E. Casey, D. Joseph, and J.A. Simon. 2008. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: Variation in sensitivity among species. Environmental Pollution 154: 291–297.
- Spurway, H. 1943. Newt larvae in brackish water. Nature 151: 109-110.
- Stanescu, F., R. Iosif, D. Székely, P. Székely, D. Rosioru, and D. Cogalniceanu. 2013. Salinity tolerance in *Pelobates fuscus* (Laurenti, 1768) tadpoles (Amphibia: Pelobatidae). Travaux du Muséum National d'Histoire Naturelle "Grigore Antipa" 56: 103–108.
- Storer, T.I. 1925. A Synopsis of the Amphibia of California. University of California Press, USA.
- Strahan, R. 1957. The effect of salinity on the survival of larvae of *Bufo* melanostictus Schneider. Copeia 1957: 146–147.
- Taylor, E.H. 1943. A new ambystomatid salamander adapted to brackish water. Copeia 3: 151–156.
- Tercafs, R.R., and E. Schoffeniels. 1962. Adaptation of amphibians to salt water. Life Sciences 1: 19–23.
- Theobald, Jr., W. 1868. Cataologue of the reptiles of British Birma, embracing the provinces of Pegu, Martaban, and Tenasserim; with descriptions of new or little-known species. Journal of the Linnean Society of London, Zoology 10: 4–67.
- Thienemann, A. 1926. Erganzende Notizen zur Salzwasserfauna von Oldesloe. Mitteilunger der Geographischen Gesellschat und des Naturhistorischen Museums in Lübeck 31: 102–126.
- Thirion, J.-M. 2002. Impact du raz de marée sur une population de Pélobate cultripède *Pelobates cultripes* (Cuvier, 1829) (Amphibia, Pelobatidae) dans un espace protégé de Charente-Maritime. Annales de la Société des sciences naturelles de la Charente-Maritime 9: 195–202.
- Thirion, J.-M. 2006. Le Pélobate cultripède *Pelobates cultripes* (Cuvier, 1829) sur la façade Atlantique Française: Chorologie, écologie et conservation. Diplome de l'ecole pratique des Hautes estudes, Montpellier Université, France.
- Thirion, J.-M. 2014. Salinity of the reproductive habitats of the Western Spadefoot Toad *Pelobates cultripes* (Cuvier, 1829), along the Atlantic coast of France (Anura: Pelobatidae). Herpetozoa 27: 13–20.
- Thunqvist, E. 2004. Regional increase of mean chloride concentration in water due to the application of deicing salt. Science of the Total Environment 325: 29–37.
- Turtle, S.L. 2000. Embryonic survivorship of the spotted salamander (*Ambystoma maculatum*) in roadside and woodland vernal pools in southeastern New Hampshire. Journal of Herpetology 34: 60–67.
- Uchiyama, M., T. Murakami, and H. Yoshizawa. 1990. Notes on the development of the crab-eating frog, *Rana cancrivora*. Zoological Science 7: 73–78.
- van Beurden, E.K., and G.C. Grigg. 1980. An isolated and expanding population of the introduced toad *Bufo marinus* in New South Wales. Australian Wildlife Research 7: 305–310.

- Van Meter, R., and C.M. Swan. 2014. Road salts as environmental constraints in urban pond food webs. PLoS One 9: 1–12. DOI: 10.1371/ journal.pone.0090168.
- Van Meter, R.J., C.M. Swan, J. Leips, and J.W. Snodgrass. 2011. Road salt stress induces novel food web structure and interactions. Wetlands 31: 843–851.
- Vences, M., D.R. Vieites, F. Glaw, H. Brinkmann, J. Kosuch, M. Veith, and A. Meyer. 2003. Multiple overseas dispersal in amphibians. Proceedings of the Royal Society B 270: 2435–2442.
- Viertel, B. 1999. Salt tolerance of *Rana temporaria*: Spawning site selection and survival during embryonic development (Amphibia, Anura). Amphibia-Reptilia 20: 161–171.
- Viosca, P., and Jr. 1923. An ecological study of the cold blooded vertebrates of southeastern Louisiana. Copeia 115: 35–44.
- Weick, D.L. 1980. Osmotic regulation and salinity tolerance in the Pacific tree frog Hyla regilla. M.A. thesis [unpublished], California State University, USA.
- Werner, F. 1909. Reptilien, Batrachier und Fische von Tripolis und Barka. Zoologische Jahrbücher Abteilung für Systematik 27: 595– 646.
- Whitfield, P.H., and N.L. Wade. 1992. Monitoring transient water quality events electronically. Water Resources Bulletin 28: 703–711.
- Whitfield, P.H., and N.L. Wade. 1996. Transient water quality events in British Columbia coastal streams. Water Science and Technology 33: 151–161.
- Williams, W.D. 2001. Anthropogenic salinisation of inland waters. Hydrobiologia 466: 329–337.
- Wittig, K.P., and S.C. Brown. 1977. Sodium balance in the newt, Notophthalmus viridescens. Comparative and Biochemical Physiology 58A: 49–52.
- Wogan, G.O.U., J.V. Vindum, J.A. Wilkinson, and A.K. Shein. 2008. New country records and range extensions for Myanmar amphibians and reptiles. Hamadryad 33: 83–96.
- Wright, A.H., and A.A. Wright. 1938. Amphibians of Texas. Transactions of the Texas Academy of Sciences 21: 5–35.
- Wu, C.-S., and Y.-C. Kam. 2009. Effects of salinity on the survival, growth, development, and metamorphosis of *Fejervarya limnocharis* tadpoles living in brackish water. Zoological Science 26: 476–482.
- Wu, C.-S., I. Gomez-Mestre, and Y.-C. Kam. 2012. Irreversibility of a bad start: Early exposure to osmotic stress limits growth and adaptive developmental plasticity. Oecologia 169: 15–22.
- Wu, C.-S., W.-K. Yang, T.-H. Lee, I. Gomez-Mestre, and Y.-C. Kam. 2014. Salinity acclimation enhances salinity tolerance in tadpoles living in brackish water through increased Na<sup>+</sup>, K<sup>+</sup>-ATPase expression. Journal of Experimental Zoology 321: 57–64.
- Wygoda, M.L., T.F. Dabruzzi, and W.A. Bennett. 2011. Cutaneous resistance to evaporative water loss in the crab-eating frog (*Fejervarya cancrivora*). Journal of Herpetology 45: 417–420.
- Young, R.T. 1924. The life of Devils Lake, North Dakota. Publication of the North Dakota Biological Station, USA.

Published on 28 May 2015