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Abstract. Given the current global amphibian decline, it is crucial to obtain accurate and current information regarding 
species distributions.  Secretive amphibians such as plethodontid salamanders can be difficult to detect in many cases, 
especially in remote, high elevation areas.  We used molecular phylogenetic analyses to identify three partially digested 
salamanders palped from the stomachs of three Common Garter Snakes (Thamnophis sirtalis) from the Klamath 
Mountains in northern California.  Our results conclusively show that the salamanders were all individuals of Ensatina 
eschscholtzii oregonensis, revealing a substantial vertical range extension for this sub-species, and documenting the first 
terrestrial breeding salamander living in the sub-alpine zone of the Klamath Mountains. 
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INTRODUCTION 
 

One of the most alarming aspects of the ongoing 
global decline in amphibian species concerns the 
disappearance of amphibians from relatively pristine 
ecosystems (Wake 1991).  A well-documented example 
comes from the high elevations of the Sierra Nevada 
Mountains in California, where two species of frogs, 
Yosemite Toads (Bufo canorus) and Mountain Yellow-
Legged Frogs (Rana muscosa), have been extirpated 
from much of their historic ranges in the past few 
decades (Bradford et al. 1994; Knapp and Matthews 
2000; Davidson and Fellers 2005; Vredenberg et al. 
2007).  The substantial distributional database for each 
species, which helped bring these declines to light, was 
largely made possible by one life-history trait of these 
particular amphibian species: their aquatic breeding 
nature.  Biologists conducting surveys during the 
summer season can easily detect the presence of all life 
stages of aquatic breeding amphibians by searching the 
meadows and edges of streams, ponds, and lakes in the 
region.  By contrast, plethodontid salamanders do not 
have an aquatic-larval stage in their life history, which 
makes them more difficult to detect than aquatic 

breeders.  The low detectability of terrestrial 
salamanders is because a significant proportion of 
populations are subterranean (Bailey et al. 2004).  For 
example, Grinnell and Storer (1924) noted that the most 
scientifically exciting discovery of their survey of 
vertebrates in the Sierra Nevada occurred when two 
individuals of a previously unknown species of 
plethodontid salamander (today known as Hydromantes 
platycephalus) were caught in a trap set for mammals at 
an elevation of 3292 m.  This illustrates the existence of 
a field-detection bias among amphibian species.  To 
counter this conservation challenge, alternative methods 
must be employed to discover cryptic populations of 
amphibians. 

The Klamath Mountains of northwestern California 
are located within a region renowned for its high 
amphibian diversity (Bury and Pearl 1999).  This region 
is a diversity hotspot for plethodontid salamanders, with 
at least eight species known to occur there (Stebbins 
2003), some of which were only recently described (e.g., 
Plethodon asupak and P. stormi).  Recent field studies in 
the sub-alpine portion of the Klamath Mountains have 
investigated the distributional ecology of amphibians 
and reptiles in the area (Welsh et al. 2006; Pope et al.  
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2008).  As part of these surveys, data on the dietary 
habits of two locally common amphibian predators, the 
Common Garter Snake (Thamnophis sirtalis) and the 
Aquatic Garter Snake (T. atratus), were obtained 
whenever possible (Pope et al. 2008).  Among the food 
items recovered from the stomachs of three T. sirtalis 
were three partially digested salamanders.  A number of 
regional salamander experts examined the specimens 
and were unable to identify them to species level based 
on morphological characteristics. 

Wildlife forensics represents another application of 
molecular phylogenetic methods.  For example, studies 
have used these powerful techniques to establish the true 
species identities of putative whale meat purchased from 
meat markets (Baker and Palumbi 1994), and fish 
offered as sushi in New York City restaurants 
(Lowenstein et al. 2009).  In these studies mitochondrial 
DNA is preferable over nuclear DNA because of its lack 
of introns, high substitution rate, limited exposure to 
recombination, and haploid mode of inheritance (Hebert 
et al. 2003).  The salamander tissues examined in this 

case were degraded, making longer fragments more 
difficult to amplify and sequence.  Therefore, we 
sequenced a short fragment of the cytochrome b gene 
due to its high proportion of phylogenetically 
informative sites and the availability of homologous 
sequences from other salamanders in the region.  Here, 
we used this methodology to conclusively establish the 
species identities of three salamanders from the sub-
alpine zone of the Klamath Mountains, California. 

 
MATERIALS AND METHODS 

 
Study site.—We collected the salamander specimens 

from the sub-alpine zone of the Trinity Alps Wilderness, 
located in the Klamath Mountains of California (Fig. 1).  
The topography of the region consists mainly of steep 
elevational gradients on ridge slopes composed of bare 
rock outcrops and expansive talus fields (Fig. 2).  
Floristic zones in the study area include sub-alpine 
forest, montane chaparral, and sub-alpine meadow, 
resulting in a sparse vegetation canopy (Ferlatte 1974).  

 
FIGURE 1.  Map of the study site in the Trinity Alps Wilderness of northwestern California, USA. 
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Precipitation in the region primarily falls as snow from 
November to May, followed by sparse rain from 
localized thunderstorms between June and October. 

 
Genetic samples.—We obtained the salamander tissue 

samples from a garter snake (Thamnophis spp.) dietary 
study that occurred between 2003 and 2006 (Pope et al. 
2008).  We performed a palping procedure (Pope et al. 
2008) on three individual T. sirtalis, found at elevations 
of 2,065 m, 2,215 m, and 2,177 m (Fig 1).  Each snake 
regurgitated a partially digested, unidentifiable 
salamander; these specimens are hereafter referred to as 
Specimen 1, Specimen 2, and Specimen 3.  We 
preserved the specimens in 95% ethanol.  We extracted 
DNA using the Phenol-Chloroform-Isoamyl Alcohol 
method (Sambrook et al. 1989), and we used the 
Polymerase Chain Reaction (PCR) to amplify a portion 
of the cytochrome b region of the mitochondrial genome 
using primers MVZ 15 (Kocher et al. 1989) and CytB2 
(Moritz et al. 1992).  Associated Genbank accession 
numbers and museum voucher numbers can be found in 
Table 1. 

 
Data analyses.—We first used NCBI Blast 

(http://www.ncbi.nlm.nih.gov/BLAST) to determine the 

likely identity of our unknown specimens.  BLAST is an 
algorithm that matches DNA sequences based solely on 
their raw similarity, thus it is possible that our sequences 
could match with a GenBank sequence due to 
homoplasies in the data rather than homologies.  
Therefore, we also employed Bayesian and Maximum 
Likelihood (ML) phylogenetic methods, which explicitly 
account for any homoplasies in the data, to confirm the 
identity of the unknown specimens.  In other words, a 
phylogenetic approach is needed to determine which of 
the known salamander species living in northwestern 
California is most closely related to our unknown 
specimens. 

We used Genbank to download cytochrome b 
sequences from all known salamander species native to 
northwestern California, and unambiguously aligned 
these sequences by eye with those of our unknown 
specimens.  We separated the data into three partitions 
corresponding to the first, second, and third codon 
positions and used the Akaike information criterion 
(AIC) in MrModeltest v2.2 (Nylander, J.A.A. 2004. 
MrModeltest v2. Program distributed by the author. 
Evolutionary Biology Centre, Uppsala University, 
Uppsala, Sweden) to determine the best-fit nucleotide 
substitution model for each data partition.  We then  

 
FIGURE 2. Echo Lake basin, Trinity Alps Wilderness, California, USA.  (Photographed by Justin Garwood). 
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analyzed these sequence data with MrBayes v3.1.2 
(Ronquist and Huelsenbeck 2003).  We ran two analyses 
with four chains for 20 million generations, sampling 
every 1000 generations to produce 20,000 trees per run.  
After removing the first 5,000 trees of each run, we 
combined the remaining 30,000 trees to produce a 50% 
Majority Rule tree.  Bayesian posterior probability 
values of  0.95 indicate strong statistical support for a 
clade’s existence.  We also analyzed these sequence data 
using a ML method as implemented in the software 
GARLI (Zwickl 2006), with 1000 bootstrap replicates 
(Felsenstein 1985).  Following Hillis and Bull (1993) we 
consider bootstrap values  70 % as constituting strong 
statistical support for a clade.  We rooted our 
phylogenetic tree using the midpoint method. 

 

RESULTS 
 
On the basis of raw sequence similarity, the results of the 
BLAST search suggested that the unknown samples 
were Ensatina eschscholtzii oregonensis. The aligned 
sequence data used in the phylogenetic analyses 
consisted of 362 unambiguously aligned base pairs of 
which 164 nucleotide positions were variable and 111 of 
which were parsimony informative.  The nucleotide 
substitution models chosen for codons 1, 2, and 3 were 
SYM+G, HKY+G, and GTR+G respectively.  Both 
Bayesian and ML analyses reveal that all three 
unidentified salamanders are nested within the Ensatina 
eschscholtzii clade with a posterior probability of 1.0 and 
a bootstrap proportion of 74 supporting the grouping 
(Fig. 3).  The unknown samples within this Ensatina  

TABLE 1.  Sample names and associated Genbank and museum voucher numbers for salamanders used in our study. 
 

Sample Genbank Accession No. Museum Voucher No. 

 
Ensatina eschscholtzii oregonensis 

 
FJ151686.1 MVZ S10793 

Ensatina eschscholtzii platensis FJ151980.1 MVZ 237157 
Ensatina eschscholtzii picta FJ151674.1 MVZ 220597 
Aneides flavipunctatus AY728214.1 MVZ 219973 
Ambystoma macrodactylum EF036634.1 JPB 21448 
Hydromantes shastae U89611.1 MVZ202326 
Plethodon elongatus AY728223.1  MVZ 220003 
Dicamptodon tenebrosus AY734593.1 MVZ 192640 
Batrachoseps attenuatus AY728228.1 MVZ 230761 
Taricha granulosa EU880333.1 MVZ 225502 
Specimen 1 HM185820 HSU 726 
Specimen 2 HM185821 HSU 727 
Specimen 3 HM185822 HSU 728 

 

 
 
  

 

 
 

FIGURE 3.  Phylogenetic tree of the known salamander species from northwestern California plus the unknown specimens (stars), based on 
Bayesian and Maximum Likelihood analyses of the cytochrome b gene.  The numbers above nodes are Bayesian posterior probabilities while the 
numbers below nodes represent bootstrap proportion values.  Only bootstrap proportion values for nodes that agree with our Bayesian analysis 
are shown. 
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clade are most closely related to the individuals of E. e. 
oregonensis, a relationship supported by a posterior 
probability of 0.97 and a bootstrap proportion of 80.  
The haplotypes for Specimens 2 and 3 were identical and 
differed from the known E. e. oregonensis haplotype by 
nine base pair mutations for a sequence divergence of 
2.48%.  The haplotype for Specimen 1 differed from the 
known E. e. oregonensis haplotype by one base pair 
mutation for a sequence divergence of 0.28%.  

 
 

DISCUSSION 
 

The Klamath Mountains, the region of the United 
States that encompasses the northwestern corner of 
California and adjacent Oregon, is considered to be a 
diversity hotspot for amphibians.  Much of this species 
richness is due to the great variety of plethodontid 
salamanders found in the region.  Although the 
distributions of some amphibian populations range into 
the highest elevations, or sub-alpine zone, of the 
Klamath Mountains, all species known from high 
elevations of this range are aquatic breeders (Welsh et al. 
2006).  Thus, the unexpected finding that several 
plethodontid salamanders were consumed by garter 
snakes represented a significant discovery despite the 
fact that the partially digested specimens were not 
identifiable to species using morphological criteria.  

Although some research has indicated that a single 
locus approach can be unreliable for identifying 
plethodontid salamanders (Vences et al. 2005), our 
analysis of mtDNA sequences confirmed that each of the 
salamanders belong to the same species (E. e. 
oregonensis; Fig. 4).  Our findings not only represent a 
new distributional record for the sub-alpine zone of the 
Klamath Mountains, but also increase the known 
elevational limit of this subspecies from 1676 m 
(Stebbins 1949) to 2215 m.  Is it possible that the snakes 
consumed the salamanders below 1676 m elevation and 
subsequently moved uphill?  Several lines of evidence 
suggest that this scenario is very unlikely.  Under ideal 
thermal conditions (25–35 C), garter snakes are able to 
digest approximately one half of an adult mouse per day 
(Stevenson et al. 1985).  Because an adult Ensatina and 
an adult mouse are similar in size, an active garter snake 
would digest the salamander in no more than a few days 
in warm summer conditions.  Radiotelemetry studies of 
T. sirtalis revealed average daily movements of only 8 
m, and no daily movements greater than 150 m were 
observed (Fitch and Shirer 1971).  Therefore, during the 
time it would take to fully digest an Ensatina 
salamander, a garter snake is unlikely to travel more than 
a few hundred meters from where it consumed its meal.  
In order to ascend from the previously known 
elevational range of Ensatina (< 1676 m) to the point of 
capture, each of the snakes would have had to travel at 
least 2 km and climb nearly 500 m in elevation (Fig. 1).  

 

 
 
FIGURE 4.  An Ensatina eschscholtzii oregonensis found on 6 October 2007 at 964 m in the Stuarts Fork drainage, Trinity Alps Wilderness, 
California, USA.  (Photographed by Justin Garwood). 
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Despite sampling the stomachs of over 400 garter 
snakes in the Trinity Alps (Pope et al. 2008), instances 
of salamander predation seem to be a relatively rare 
occurrence.  In addition to the three Ensatina identified 
in this study, garter snakes in the Trinity Alps study area 
are rarely observed consuming Rough-skinned Newts 
(Taricha granulosa) and Long-toed Salamanders 
(Ambystoma macrodactylum).  In contrast, Cascades 
Frogs (Rana cascadae) and Pacific Tree Frogs 
(Pseudacris regilla) were the primary amphibian food 
items for T. sirtalis and T. atratus (Pope et al. 2008).  
We speculate that the snakes’ preference for frogs may 
simply be a function of both species being diurnally 
active, whereas Ensatina may not generally be available 
to the snakes owing to their nocturnal activity and use of 
subterranean daytime retreats in forested regions 
(Stebbins 1954).  Moreover, this sub-alpine region has 
shallow and seasonally dry serpentine soils, resulting in 
sparse vegetation cover and scant downed wood.  We 
suspect the region’s expansive talus fields may support 
populations of Ensatina by providing moist 
microclimates year-round suitable for terrestrial 
salamanders but not for active garter snakes.  

A precedent does exist for the discovery of a 
salamander known from an unlikely area from the 
stomach of a snake predator.  Wall (1911) reported 
finding a species of salamander from the family 
Salamandridae inside the stomach of a snake in the 
remote high elevation Hindu Kush Mountains of 
Pakistan, an area from where salamanders are not known 
to this day.  This salamander specimen was never 
described, and apparently was not preserved, but due to 
its extreme isolation from other salamanders it likely 
represents a new species.  Similarly, examination of the 
stomach contents of Sperm Whales (Physeter 
macrocephalus) has revealed the existence of new squid 
species (Verrill 1879; Joubin 1900).  We propose that 
phylogenetic analysis of stomach contents could be 
employed throughout the world to increase the detection 
probability of small vertebrates.  Although the 
salamanders in this study were found to be 
representatives of a known species, the approach we 
employed here conceivably could result in the discovery 
of new amphibian species. 
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